Pointers and the Free Store

Value Ranges for Enumerations

Originally, the only valid values for an enumeration were those named in the declaration.
However, C++ has expanded the list of valid values that can be assigned to an enumera-
tion variable through the use of a type cast. Each enumeration has a range, and you can
assign any integer value in the range, even if it’s not an enumerator value, by using a type
cast to an enumeration variable. For example, suppose that bits and myflag are defined
this way:

enum bits{one = 1, two = 2, four = 4, eight = 8};

bits myflag;

In this case, the following is valid:

myflag = bits(6); // valid, because 6 is in bits range

Here 6 is not one of the enumerations, but it lies in the range the enumerations define.

The range is defined as follows. First, to find the upper limit, you take the largest enu-
merator value. Then you find the smallest power of two greater than this largest value and
subtract one; the result is the upper end of the range. (For example, the largest bigstep
value, as previously defined, is 101. The smallest power of two greater than this is 128, so
the upper end of the range is 127.) Next, to find the lower limit, you find the smallest
enumerator value. If it is O or greater, the lower limit for the range is 0. If the smallest
enumerator is negative, you use the same approach as for finding the upper limit but toss
in a minus sign. (For example, if the smallest enumerator is -6, the next power of two
[times a minus sign] is -8, and the lower limit is -7.)

The idea is that the compiler can choose how much space to use to hold an enumera-
tion. It might use 1 byte or less for an enumeration with a small range and 4 bytes for an
enumeration with type long values.

C++11 extends enumerations with a form called the scoped enumeration. Chapter 10
discusses this form briefly in the section “Class Scope.”

Pointers and the Free Store

The beginning of Chapter 3 mentions three fundamental properties of which a computer
program must keep track when it stores data.To save the book the wear and tear of your
thumbing back to that chapter, here are those properties again:

= Where the information is stored

= What value is kept there

= What kind of information is stored

You've used one strategy for accomplishing these ends: defining a simple variable. The
declaration statement provides the type and a symbolic name for the value. It also causes
the program to allocate memory for the value and to keep track of the location internally.

153

154 Chapter 4 Compound Types

Let’s look at a second strategy now, one that becomes particularly important in devel-
oping C++ classes. This strategy is based on pointers, which are variables that store
addresses of values rather than the values themselves. But before discussing pointers, let’s
talk about how to explicitly find addresses for ordinary variables.You just apply the
address operator, represented by &, to a variable to get its location; for example, if home is a
variable, ghome is its address. Listing 4.14 demonstrates this operator.

Listing 4.14 address.cpp

// address.cpp -- using the & operator to find addresses
#include <iostreams>
int main()
{
using namespace std;
int donuts = 6;
double cups = 4.5;

cout << "donuts value = " << donuts;

cout << " and donuts address = " << &donuts << endl;
// NOTE: you may need to use unsigned (&donuts)
// and unsigned (&cups)

cout << "cups value = " << cups;
cout << " and cups address = " << &cups << endl;
return 0;

Here is the output from the program in Listing 4.14 on one system:

donuts value = 6 and donuts address = 0x0065£d40
cups value = 4.5 and cups address = 0x0065fd44

The particular implementation of cout shown here uses hexadecimal notation when
displaying address values because that is the usual notation used to specify a memory
address. (Some implementations use base 10 notation instead.) Our implementation stores
donuts at a lower memory location than cups.The difference between the two addresses
is 0x0065fd44 - 0x0065£d40, or 4. This makes sense because donuts is type int, which
uses 4 bytes. Different systems, of course, will give different values for the address. Also
some may store cups first, then donuts, giving a difference of 8 bytes because cups is
double. And some may not even use adjacent locations.

Using ordinary variables, then, treats the value as a named quantity and the location as
a derived quantity. Now let’s look at the pointer strategy, one that is essential to the C++
programming philosophy of memory management. (See the following sidebar, “Pointers
and the C++ Philosophy.”)

Pointers and the Free Store

Pointers and the C++ Philosophy

Object-oriented programming differs from traditional procedural programming in that OOP
emphasizes making decisions during runtime instead of during compile time. Runtime
means while a program is running, and compile time means when the compiler is putting a
program together. A runtime decision is like, when on vacation, choosing what sights to see
depending on the weather and your mood at the moment, whereas a compile-time decision
is more like adhering to a preset schedule, regardless of the conditions.

Runtime decisions provide the flexibility to adjust to current circumstances. For example,
consider allocating memory for an array. The traditional way is to declare an array. To
declare an array in C++, you have to commit yourself to a particular array size. Thus, the
array size is set when the program is compiled; it is a compile-time decision. Perhaps you
think an array of 20 elements is sufficient 80% of the time but that occasionally the pro-
gram will need to handle 200 elements. To be safe, you use an array with 200 elements.
This results in your program wasting memory most of the time it's used. OOP tries to make
a program more flexible by delaying such decisions until runtime. That way, after the pro-
gram is running, you can tell it you need only 20 elements one time or that you need 205
elements another time.

In short, with OOP you would like to make the array size a runtime decision. To make this
approach possible, the language has to allow you to create an array—or the equivalent—
while the program runs. The C++ method, as you soon see, involves using the keyword new
to request the correct amount of memory and using pointers to keep track of where the
newly allocated memory is found.

Making runtime decisions is not unique to OOR But C++ makes writing the code a bit more
straightforward than does C.

The new strategy for handling stored data switches things around by treating the loca-
tion as the named quantity and the value as a derived quantity. A special type of variable—
the pointer—holds the address of a value. Thus, the name of the pointer represents the
location. Applying the * operator, called the indirect value or the dereferencing operator,
yields the value at the location. (Yes, this is the same * symbol used for multiplication;
C++ uses the context to determine whether you mean multiplication or dereferencing.)
Suppose, for example, that manly is a pointer. In that case, manly represents an address, and
*manly represents the value at that address. The combination *manly becomes equivalent
to an ordinary type int variable. Listing 4.15 demonstrates these ideas. It also shows how
to declare a pointer.

Listing 4.15 pointer.cpp

// pointer.cpp -- our first pointer variable
#include <iostreams>
int main()
{
using namespace std;
int updates = 6; // declare a variable
int * p updates; // declare pointer to an int

155

156 Chapter 4 Compound Types

p_updates = &updates; // assign address of int to pointer

// express values two ways
cout << "Values: updates = " << updates;
cout << ", *p updates = " << *p updates << endl;

// express address two ways
cout << "Addresses: &updates = " << &updates;
cout << ", p updates = " << p updates << endl;

// use pointer to change value
*p_updates = *p_updates + 1;
cout << "Now updates = " << updates << endl;
return 0;

Here is the output from the program in Listing 4.15:
Values: updates = 6, *p updates = 6
Addresses: &updates = 0x0065fd48, p updates = 0x0065£d48
Now updates = 7

As you can see, the int variable updates and the pointer variable p_updates are just
two sides of the same coin.The updates variable represents the value as primary and uses
the & operator to get the address, whereas the p_updates variable represents the address as
primary and uses the * operator to get the value (see Figure 4.8). Because p_updates
points to updates, *p_updates and updates are completely equivalent.You can use
*p_updates exactly as you would use a type int variable. As the program in Listing 4.15
shows, you can even assign values to *p_updates. Doing so changes the value of the
pointed-to value, updates.

int jumbo = 23;
int * pe = &jumbo;

These are These are
the same. 1 | the same.
jumbo &jumbo

*pe pe
value address
23 0x2ac8

Figure 4.8 Two sides of a coin.

Pointers and the Free Store

Declaring and Initializing Pointers

Let’s examine the process of declaring pointers. A computer needs to keep track of the
type of value to which a pointer refers. For example, the address of a char typically looks
the same as the address of a double, but char and double use different numbers of bytes
and different internal formats for storing values. Therefore, a pointer declaration must
specify what type of data to which the pointer points.

For example, the preceding example has this declaration:

int * p updates;

This states that the combination * p_updates is type int. Because you use the * oper-
ator by applying it to a pointer, the p_updates variable itself must be a pointer. We say that
p_updates points to type int.We also say that the type for p_updates is pointer-to-int
or, more concisely, int *.To repeat: p_updates is a pointer (an address), and *p_updates
is an int and not a pointer (see Figure 4.9).

Memory address Variable name
— 1000 12 ducks
1002 birfldog
points to
1004 ducks
1006 1000 birddog
—

1008

1010

1012

1014

1016
int ducks = 12; int *birddog = &ducks;
creates ducks variable, stores creates birddog variable, stores
the value 12 in the variable the address of ducks in the variable

Figure 4.9 Pointers store addresses.

Incidentally, the use of spaces around the * operator are optional. Traditionally, C pro-
grammers have used this form:

int *ptr;
This accentuates the idea that the combination *ptr is a type int value. Many C++
programmers, on the other hand, use this form:

int* ptr;

157

158

Chapter 4 Compound Types

This emphasizes the idea that int* is a type, pointer-to-int. Where you put the spaces
makes no difference to the compiler.You could even do this:

int*ptr;

Be aware, however, that the following declaration creates one pointer (p1) and one
ordinary int (p2):
int* pl, p2;

You need an * for each pointer variable name.

Note
In C++, the combination int * is a compound type, pointer-to-int.

You use the same syntax to declare pointers to other types:

double * tax ptr; // tax ptr points to type double
char * str; // str points to type char

Because you declare tax_ptr as a pointer-to-double, the compiler knows that
*tax_ptr is a type double value.That is, it knows that *tax_ptr represents a number
stored in floating-point format that occupies (on most systems) 8 bytes. A pointer variable
is never simply a pointer. It is always a pointer to a specific type. tax_ptr is type pointer-
to-double (or type double *),and str is type pointer-to-char (or char *).Although
both are pointers, they are pointers of two different types. Like arrays, pointers are based
on other types.

Note that whereas tax_ptr and str point to data types of two different sizes, the two
variables tax_ptr and str themselves are typically the same size. That is, the address of a
char is the same size as the address of a double, much as 1016 might be the street address
for a department store, whereas 1024 could be the street address of a small cottage. The
size or value of an address doesn’t really tell you anything about the size or kind of vari-
able or building you find at that address. Usually, addresses require 2 or 4 bytes, depending
on the computer system. (Some systems might have larger addresses, and a system can use
different address sizes for different types.)

You can use a declaration statement to initialize a pointer. In that case, the pointer, not
the pointed-to value, is initialized. That is, the following statements set pt and not *pt to
the value &higgens:
int higgens = 5;
int * pt = &higgens;

Listing 4.16 demonstrates how to initialize a pointer to an address.

Listing 4.16 init ptr.cpp

// init_ptr.cpp -- initialize a pointer
#include <iostream>
int main()

{

Pointers and the Free Store

using namespace std;
int higgens = 5;
int * pt = &higgens;

cout << "Value of higgens = " << higgens

<< "; Address of higgens = " << &higgens << endl;
cout << "Value of *pt = " << *pt

<< "; Value of pt = " << pt << endl;
return 0;

Here is some sample output from the program in Listing 4.16:

Value of higgens = 5; Address of higgens = 0012FED4
Value of *pt = 5; Value of pt = 0012FED4

You can see that the program initializes pt, not *pt, to the address of higgens. (Your
system most likely will show different values for the addresses and may display them in a
different format.)

Pointer Danger

Danger awaits those who incautiously use pointers. One extremely important point is that
when you create a pointer in C++, the computer allocates memory to hold an address,
but it does not allocate memory to hold the data to which the address points. Creating
space for the data involves a separate step. Omitting that step, as in the following, is an
invitation to disaster:

long * fellow; // create a pointer-to-long
xfellow = 223323; // place a value in never-never land

Sure, fellow is a pointer. But where does it point? The code failed to assign an address
to fellow. So where is the value 223323 placed? We can’t say. Because fellow wasn't ini-
tialized, it could have any value. Whatever that value is, the program interprets it as the
address at which to store 223323. If fellow happens to have the value 1200, then the
computer attempts to place the data at address 1200, even if that happens to be an address
in the middle of your program code. Chances are that wherever fellow points, that is not
where you want to put the number 223323.This kind of error can produce some of the
most insidious and hard-to-trace bugs.

Caution

Pointer Golden Rule: Always initialize a pointer to a definite and appropriate address before
you apply the dereferencing operator (*) to it.

159

160

Chapter 4 Compound Types

Pointers and Numbers

Pointers are not integer types, even though computers typically handle addresses as inte-
gers. Conceptually, pointers are distinct types from integers. Integers are numbers you can
add, subtract, divide, and so on. But a pointer describes a location, and it doesn’t make
sense, for example, to multiply two locations by each other. In terms of the operations you
can perform with them, pointers and integers are different from each other. Consequently,
you can’t simply assign an integer to a pointer:

int * pt;

pt = 0xB8000000; // type mismatch

Here, the left side is a pointer to int, so you can assign it an address, but the right side
is just an integer. You might know that 0xB8000000 is the combined segment-offset
address of video memory on your aging computer system, but nothing in the statement
tells the program that this number is an address. C prior to C99 lets you make assignments
like this. But C++ more stringently enforces type agreement, and the compiler will give
you an error message saying you have a type mismatch. If you want to use a numeric
value as an address, you should use a type cast to convert the number to the appropriate
address type:
int * pt;
pt = (int *) 0xB8000000; // types now match

Now both sides of the assignment statement represent addresses of integers, so the
assignment is valid. Note that just because it 1s the address of a type int value doesn’t
mean that pt itself is type int. For example, one might have a platform for which type
int is a 2-byte value and the addresses are 4-byte values.

Pointers have some other interesting properties that we’ll discuss as they become rele-
vant. Meanwhile, let’s look at how pointers can be used to manage runtime allocation of
memory space.

Allocating Memory with new

Now that you have a feel for how pointers work, let’s see how they can implement the
important technique of allocating memory as a program runs. So far, you’ve initialized
pointers to the addresses of variables; the variables are named memory allocated during
compile time, and each pointer merely provides an alias for memory you could access
directly by name anyway. The true worth of pointers comes into play when you allocate
unnamed memory during runtime to hold values. In this case, pointers become the only
access to that memory. In C, you can allocate memory with the library function
malloc ().You can still do so in C++, but C++ also has a better way: the new operator.

Let’s try out this new technique by creating unnamed runtime storage for a type int
value and accessing the value with a pointer. The key is the C++ new operator.You tell
new for what data type you want memory; new finds a block of the correct size and

Pointers and the Free Store

returns the address of the block.You assign this address to a pointer, and you’re in business.
Here’s an example of the technique:

int * pn = new int;

The new int part tells the program you want some new storage suitable for holding an
int.The new operator uses the type to figure out how many bytes are needed. Then it
finds the memory and returns the address. Next, you assign the address to pn, which is
declared to be of type pointer-to-int. Now pn is the address and *pn is the value stored
there. Compare this with assigning the address of a variable to a pointer:
int higgens;
int * pt = &higgens;

In both cases (pn and pt), you assign the address of an int to a pointer. In the second
case, you can also access the int by name: higgens. In the first case, your only access is via
the pointer. That raises a question: Because the memory to which pn points lacks a name,
what do you call it? We say that pn points to a data object. This is not “object” in the sense
of “object-oriented programming”; it’s just “object” in the sense of “thing.” The term “data
object” is more general than the term “variable” because it means any block of memory
allocated for a data item. Thus, a variable is also a data object, but the memory to which
pn points is not a variable. The pointer method for handling data objects may seem more
awkward at first, but it offers greater control over how your program manages memory.

The general form for obtaining and assigning memory for a single data object, which
can be a structure as well as a fundamental type, is this:

typeName * pointer name = new typeName;
You use the data type twice: once to specify the kind of memory requested and once
to declare a suitable pointer. Of course, if you've already declared a pointer of the correct

type, you can use it rather than declare a new one. Listing 4.17 illustrates using new with
two different types.

Listing 4.17 use_new.cpp

// use new.cpp -- using the new operator
#include <iostream>
int main()
{
using namespace std;
int nights = 1001;
int * pt = new int; // allocate space for an int
*pt = 1001; // store a value there

cout << "nights value = ";
cout << nights << ": location " << &nights << endl;
cout << "int ";

cout << "value = " << *pt << ": location = " << pt << endl;

161

162

Chapter 4 Compound Types

double * pd = new double; // allocate space for a double
*pd = 10000001.0; // store a double there

cout << "double ";

cout << "value = " << *pd << ": location = " << pd << endl;
cout << "location of pointer pd: " << &pd << endl;

cout << "size of pt = " << sizeof(pt);

cout << ": size of *pt = " << sizeof (*pt) << endl;

cout << "size of pd = " << sizeof pd;

cout << ": size of *pd = " << sizeof (*pd) << endl;

return 0;

Here is the output from the program in Listing 4.17:

nights value = 1001: location 0028F7F8

int value = 1001: location = 00033A98
double value = 1e+007: location = 000339B8
location of pointer pd: 0028F7FC

size of pt = 4: size of *pt = 4

size of pd = 4: size of *pd = 8

Of course, the exact values for the memory locations differ from system to system.

Program Notes

The program in Listing 4.17 uses new to allocate memory for the type int and type
double data objects. This occurs while the program is running. The pointers pt and pd
point to these two data objects. Without them, you cannot access those memory locations.
With them, you can use *pt and *pd just as you would use variables.You assign values to
*pt and *pd to assign values to the new data objects. Similarly, you print *pt and *pd to
display those values.

The program in Listing 4.17 also demonstrates one of the reasons you have to declare
the type a pointer points to. An address in itself reveals only the beginning address of the
object stored, not its type or the number of bytes used. Look at the addresses of the two
values. They are just numbers with no type or size information. Also note that the size of a
pointer-to-int is the same as the size of a pointer-to-double. Both are just addresses. But
because use_new. cpp declares the pointer types, the program knows that *pd is a double
value of 8 bytes, whereas *pt is an int value of 4 bytes. When use_new. cpp prints the
value of *pd, cout can tell how many bytes to read and how to interpret them.

Another point to note is that typically new uses a different block of memory than do
the ordinary variable definitions that we have been using. Both the variables nights and
pd have their values stored in a memory region called the stack, whereas the memory allo-
cated by new is in a region called the heap or free store. Chapter 9 discusses this a bit further.

Pointers and the Free Store

Out of Memory?

It’s possible that a computer might not have sufficient memory available to satisfy a new
request. When that is the case, new normally responds by throwing an exception, an error-
handling technique discussed in Chapter 15, “Friends, Exceptions, and More.” In older imple-
mentations new returns the value 0. In C++, a pointer with the value 0 is called the null
pointer. C++ guarantees that the null pointer never points to valid data, so it is often used to
indicate failure for operators or functions that otherwise return usable pointers. The if
statement, discussed in Chapter 6, helps you deal with this possibility. For now, the impor-
tant point is that C++ provides the tools to detect and respond to allocation failures.

Freeing Memory with delete

Using new to request memory when you need it is just the more glamorous half of the
C++ memory-management package. The other half is the delete operator, which enables
you to return memory to the memory pool when you are finished with it. That is an
important step toward making the most eftective use of memory. Memory that you
return, or free, can then be reused by other parts of the program.You use delete by fol-
lowing it with a pointer to a block of memory originally allocated with new:

int * ps = new int; // allocate memory with new

Coe // use the memory

delete ps; // free memory with delete when done

This removes the memory to which ps points; it doesn’t remove the pointer ps itself.
You can reuse ps, for example, to point to another new allocation.You should always bal-
ance a use of new with a use of delete; otherwise, you can wind up with a memory leak—
that is, memory that has been allocated but can no longer be used. If a memory leak
grows too large, it can bring a program seeking more memory to a halt.

You should not attempt to free a block of memory that you have previously freed. The
C++ Standard says the result of such an attempt is undefined, meaning that the conse-
quences could be anything. Also you cannot use delete to free memory created by
declaring ordinary variables:

int * ps = new int; // ok

delete ps; // ok

delete ps; // not ok now

int jugs = 5; // ok

int * pi = &jugs; // ok

delete pi; // not allowed, memory not allocated by new
Caution

You should use delete only to free memory allocated with new. However, it is safe to apply
delete to a null pointer.

163

164

Chapter 4 Compound Types

Note that the critical requirement for using delete is to use it with memory allocated
by new.This doesn’t mean you have to use the same pointer you used with new; instead,
you have to use the same address:

int * ps = new int; // allocate memory
int * pg = ps; // set second pointer to same block
delete pq; // delete with second pointer

Ordinarily, you won't create two pointers to the same block of memory because that
raises the possibility that you will mistakenly try to delete the same block twice. But as
you’ll soon see, using a second pointer does make sense when you work with a function
that returns a pointer.

Using new to Create Dynamic Arrays

If all a program needs is a single value, you might as well declare a simple variable because
that is simpler, if less impressive, than using new and a pointer to manage a single small data
object. More typically, you use new with larger chunks of data, such as arrays, strings, and
structures. This is where new is useful. Suppose, for example, youre writing a program that
might or might not need an array, depending on information given to the program while
it is running. If you create an array by declaring it, the space is allocated when the pro-
gram is compiled. Whether or not the program finally uses the array, the array is there,
using up memory. Allocating the array during compile time is called static binding, meaning
that the array is built in to the program at compile time. But with new, you can create an
array during runtime if you need it and skip creating the array if you don’t need it. Or you
can select an array size after the program is running. This is called dynamic binding, meaning
that the array is created while the program is running. Such an array is called a dynamic
array. With static binding, you must specify the array size when you write the program.
With dynamic binding, the program can decide on an array size while the program runs.

For now, we’ll look at two basic matters concerning dynamic arrays: how to use C++’s
new operator to create an array and how to use a pointer to access array elements.

Creating a Dynamic Array with new

It’s easy to create a dynamic array in C++; you tell new the type of array element and
number of elements you want. The syntax requires that you follow the type name with
the number of elements, in brackets. For example, if you need an array of 10 ints, you
use this:

int * psome = new int [10]; // get a block of 10 ints

The new operator returns the address of the first element of the block. In this example,
that value is assigned to the pointer psome.

As always, you should balance the call to new with a call to delete when the program
finishes using that block of memory. However, using new with brackets to create an array
requires using an alternative form of delete when freeing the array:

delete [] psome; // free a dynamic array

Pointers and the Free Store

The presence of the brackets tells the program that it should free the whole array, not
just the element pointed to by the pointer. Note that the brackets are between delete
and the pointer. If you use new without brackets, you should use delete without brackets.
If you use new with brackets, you should use delete with brackets. Earlier versions of
C++ might not recognize the bracket notation. For the ANSI/ISO Standard, however, the
effect of mismatching new and delete forms is undefined, meaning that you can’t rely on
some particular behavior. Here’s an example:
int * pt = new int;
short * ps = new short [500];
delete [] pt; // effect is undefined, don't do it
delete ps; // effect is undefined, don't do it

In short, you should observe these rules when you use new and delete:

= Don'’t use delete to free memory that new didn’t allocate.

= Don'’t use delete to free the same block of memory twice in succession.
= Use delete [] if you used new [] to allocate an array.

= Use delete (no brackets) if you used new to allocate a single entity.

= It’s safe to apply delete to the null pointer (nothing happens).

Now let’s return to the dynamic array. Note that psome is a pointer to a single int, the
first element of the block. It’s your responsibility to keep track of how many elements are
in the block.That is, because the compiler doesn’t keep track of the fact that psome points
to the first of 10 integers, you have to write your program so that it keeps track of the
number of elements.

Actually, the program does keep track of the amount of memory allocated so that it
can be correctly freed at a later time when you use the delete [] operator. But that
information isn’t publicly available; you can’t use the sizeof operator, for example, to find
the number of bytes in a dynamically allocated array.

The general form for allocating and assigning memory for an array is this:

type name * pointer name = new type name [num elements];

Invoking the new operator secures a block of memory large enough to hold
num_elements elements of type type name, with pointer name pointing to the first ele-
ment. As you’re about to see, you can use pointer name in many of the same ways you
can use an array name.

Using a Dynamic Array

After you create a dynamic array, how do you use it? First, think about the problem con-
ceptually. The following statement creates a pointer, psome, that points to the first element
of a block of 10 int values:

int * psome = new int [10]; // get a block of 10 ints

165

166

Chapter 4 Compound Types

Think of it as a finger pointing to that element. Suppose an int occupies 4 bytes.
Then, by moving your finger 4 bytes in the correct direction, you can point to the second
element. Altogether, there are 10 elements, which is the range over which you can move
your finger. Thus, the new statement supplies you with all the information you need to
identify every element in the block.

Now think about the problem practically. How do you access one of these elements?
The first element is no problem. Because psome points to the first element of the array,
*psome is the value of the first element. That leaves nine more elements to access. The sim-
plest way to access the elements may surprise you if you haven’t worked with C: Just use
the pointer as if it were an array name. That is, you can use psome [0] instead of *psome for
the first element, psome [1] for the second element, and so on. It turns out to be very sim-
ple to use a pointer to access a dynamic array, even if it may not immediately be obvious
why the method works. The reason you can do this is that C and C++ handle arrays inter-
nally by using pointers anyway. This near equivalence of arrays and pointers is one of the
beauties of C and C++. (It’s also sometimes a problem, but that’s another story.) You’ll
learn more about this equivalence in a moment. First, Listing 4.18 shows how you can use
new to create a dynamic array and then use array notation to access the elements. It also
points out a fundamental difference between a pointer and a true array name.

Listing 4.18 arraynew.cpp

// arraynew.cpp -- using the new operator for arrays
#include <iostream>
int main()
{
using namespace std;
double * p3 = new double [3]; // space for 3 doubles

p3[0] = 0.2; // treat p3 like an array name
p3[1] = 0.5;
p3[2] = 0.8;

cout << "p3[1l] is " << p3[1] << ".\n";

p3 = p3 + 1; // increment the pointer
cout << "Now p3[0] is " << p3[0] << " and ";

cout << "p3[1] is " << p3[1] << ".\n";

p3 =p3 - 1; // point back to beginning
delete [] p3; // free the memory
return 0;

Here is the output from the program in Listing 4.18:

p3[1] is 0.5.
Now p3[0] is 0.5 and p3[1] is 0.8.

Pointers, Arrays, and Pointer Arithmetic

As you can see, arraynew. cpp uses the pointer p3 as if it were the name of an array,
with p3[0] as the first element, and so on.The fundamental difference between an array
name and a pointer appears in the following line:

p3 = p3 + 1; // okay for pointers, wrong for array names

You can’t change the value of an array name. But a pointer is a variable, hence you can
change its value. Note the effect of adding 1 to p3.The expression p3 [0] now refers to
the former second element of the array. Thus, adding 1 to p3 causes it to point to the sec-
ond element instead of the first. Subtracting one takes the pointer back to its original
value so that the program can provide delete [] with the correct address.

The actual addresses of consecutive ints typically differ by 2 or 4 bytes, so the fact that
adding 1 to p3 gives the address of the next element suggests that there is something spe-
cial about pointer arithmetic. There is.

Pointers, Arrays, and Pointer Arithmetic

The near equivalence of pointers and array names stems from pointer arithmetic and how
C++ handles arrays internally. First, let’s check out the arithmetic. Adding one to an inte-
ger variable increases its value by one, but adding one to a pointer variable increases its
value by the number of bytes of the type to which it points. Adding one to a pointer to
double adds 8 to the numeric value on systems with 8-byte double, whereas adding one
to a pointer-to-short adds two to the pointer value if short is 2 bytes. Listing 4.19
demonstrates this amazing point. It also shows a second important point: C++ interprets
the array name as an address.

Listing 4.19 addpntrs.cpp

// addpntrs.cpp -- pointer addition

#include <iostream>

int main()

{
using namespace std;
double wages([3] = {10000.0, 20000.0, 30000.0};
short stacks[3] = {3, 2, 1};

// Here are two ways to get the address of an array
double * pw = wages; // name of an array = address
short * ps = &stacks[0]; // or use address operator
// with array element
cout << "pw = " << pw << ", *pw = " << *pw << endl;
pw = pw + 1;
cout << "add 1 to the pw pointer:\n";

cout << "pw = " << pw << ", *pw = " << *pw << "\n\n";

167

168 Chapter 4 Compound Types

cout << "ps = " << ps << ", *ps = " << *ps << endl;
ps = ps + 1;
cout << "add 1 to the ps pointer:\n";

cout << "ps = " << ps << ", *ps = " << *ps << "\n\n";

cout << "access two elements with array notation\n";

cout << "stacks[0] = " << stacks[0]

<< ", stacks[l] = " << stacks[l] << endl;
cout << "access two elements with pointer notation\n";
cout << "*stacks = " << *gstacks

<< ", *(stacks + 1) = " << *(stacks + 1) << endl;
cout << sizeof (wages) << " = size of wages array\n";
cout << sizeof (pw) << " = size of pw pointer\n";
return 0;

Here is the output from the program in Listing 4.19:

pw = 0x28ccf0, *pw = 10000
add 1 to the pw pointer:
pw = 0x28ccf8, *pw = 20000

ps = 0x28ccea, *ps = 3
add 1 to the ps pointer:
ps = 0x28ccec, *ps = 2

access two elements with array notation
stacks[0] = 3, stacks[l] = 2

access two elements with pointer notation
*stacks = 3, *(stacks + 1) = 2

24 = size of wages array

4 = size of pw pointer

Program Notes

In most contexts, C++ interprets the name of an array as the address of its first element.
Thus, the following statement makes pw a pointer to type double and then initializes pw
to wages, which is the address of the first element of the wages array:

double * pw = wages;

For wages, as with any array, we have the following equality:

wages = &wages[0] = address of first element of array

Just to show that this is no jive, the program explicitly uses the address operator in the
expression &stacks [0] to initialize the ps pointer to the first element of the stacks array.

Pointers, Arrays, and Pointer Arithmetic

Next, the program inspects the values of pw and *pw. The first is an address, and the
second is the value at that address. Because pw points to the first element, the value dis-
played for *pw is that of the first element, 10000. Then the program adds one to pw. As
promised, this adds eight to the numeric address value because double on this system is 8
bytes. This makes pw equal to the address of the second element. Thus, *pw is now 20000,
the value of the second element (see Figure 4.10). (The address values in the figure are
adjusted to make the figure clearer.)

double wages[3] = {10000.0, 20000.0, 30000.0};
short stacks[3] = {8, 2, 1};

double * pw = wages;

short * ps = &stacks[0];

l10000.0 [20000.0 [30000.0 3]2]1|

Address: 100 108 116 124126 128
pw (pw + 1) ps (ps + 1)
pw points to type double, so ps points to type short, so
adding 1 to pw changes its adding 1 to ps changes its
value by 8 bytes. value by 2 bytes.

Figure 4.10 Pointer addition.

After this, the program goes through similar steps for ps. This time, because ps points
to type short and because short is 2 bytes, adding 1 to the pointer increases its value by
2 (0x28ccea + 2 = 0x28ccec in hexadecimal). Again, the result is to make the pointer
point to the next element of the array.

Note

Adding one to a pointer variable increases its value by the number of bytes of the type to
which it points.

Now consider the array expression stacks [1].The C++ compiler treats this expres-
sion exactly as if you wrote it as * (stacks + 1).The second expression means calculate
the address of the second element of the array and then find the value stored there. The
end result is precisely what stacks [1] means. (Operator precedence requires that you use
the parentheses. Without them, 1 would be added to *stacks instead of to stacks.)

The program output demonstrates that * (stacks + 1) and stacks[1] are the same.
Similarly, * (stacks + 2) is the same as stacks [2]. In general, wherever you use array
notation, C++ makes the following conversion:

arrayname [i] becomes * (arrayname + i)

169

170

Chapter 4 Compound Types

And if you use a pointer instead of an array name, C++ makes the same conversion:

pointername [i] becomes * (pointername + i)

Thus, in many respects you can use pointer names and array names in the same way.
You can use the array brackets notation with either.You can apply the dereferencing oper-
ator (*) to either. In most expressions, each represents an address. One difference is that
you can change the value of a pointer, whereas an array name is a constant:

pointername = pointername + 1; // valid
arrayname = arrayname + 1; // not allowed

A second difference is that applying the sizeof operator to an array name yields the
size of the array, but applying sizeof to a pointer yields the size of the pointer, even if the
pointer points to the array. For example, in Listing 4.19, both pw and wages refer to the
same array. But applying the sizeof operator to them produces the following results:

24 = size of wages array << displaying sizeof wages

4 = size of pw pointer << displaying sizeof pw

This is one case in which C++ doesn’t interpret the array name as an address.

The Address of an Array

Taking the address of an array is another case in which the name of an array is not inter-
preted as its address. But wait, isn't the name of an array interpreted as the address of the
array? Not quite—the name of the array is interpreted as the address of the first element of
an array, whereas applying the address operator yields the address of the whole array:

short tell[10]; // tell an array of 20 bytes
cout << tell << endl; // displays &tell[0]

cout << &tell << endl; // displays address of whole array

Numerically, these two addresses are the same, but conceptually &tell [0], and hence
tell, is the address of a 2-byte block of memory, whereas &tell is the address of a 20-
byte block of memory. So the expression tell + 1 adds 2 to the address value, whereas
&tell + 1 adds 20 to the address value. Another way of expressing this is to say that
tell is type pointerto-short, or short *, and &tell is type pointerto-array-of-20-shorts,
or short (*) [20].

Now you might be wondering about the genesis of that last type description. First, here is
how you could declare and initialize a pointer of that type:

short (*pas) [20] = &tell; // pas points to array of 20 shorts

If you omit the parentheses, precedence rules would first associate [20] with pas, making
pas an array of 20 pointers-to-short, so the parentheses are necessary. Next, if you wish to
describe the type of a variable, you can use the declaration of that variable as a guide and
remove the variable name. Thus, the type of pas is short (*) [20]. Also note that
because pas is set to &tell, *pas is equivalent to tell, so (*pas) [0] would be the first
element of the tell array.

Pointers, Arrays, and Pointer Arithmetic

In short, using new to create an array and using a pointer to access the different ele-
ments is a simple matter.You just treat the pointer as an array name. Understanding why
this works, however, is an interesting challenge. If you actually want to understand arrays
and pointers, you should review their mutual relationships carefully.

Summarizing Pointer Points

You’ve been exposed to quite a bit of pointer knowledge lately, so let’s summarize what’s
been revealed about pointers and arrays to date.

Declaring Pointers
To declare a pointer to a particular type, use this form:

typeName * pointerName;

Here are some examples:

double * pn; // pn can point to a double value
char * pc; // pc can point to a char value

Here pn and pc are pointers, and double * and char * are the C++ notations for the
types pointer-to-double and pointer-to-char.

Assigning Values to Pointers
You should assign a memory address to a pointer.You can apply the & operator to a vari-
able name to get an address of named memory, and the new operator returns the address of
unnamed memory.

Here are some examples:

double * pn; // pn can point to a double value

double * pa; // so can pa

char * pc; // pc can point to a char value

double bubble = 3.2;

pn = &bubble; // assign address of bubble to pn

pc = new char; // assign address of newly allocated char memory to pc

pa = new double[30]; // assign address of 1lst element of array of 30 double to pa

Dereferencing Pointers
Dereferencing a pointer means referring to the pointed-to value.You apply the derefer-
encing, or indirect value, operator (*) to a pointer to dereference it. Thus, if pn is a
pointer to bubble, as in the preceding example, then *pn is the pointed-to value, or 3.2,
in this case.

Here are some examples:

cout << *pn; // print the value of bubble
*pc = 'S'; // place 'S' into the memory location whose address is pc

171

172

Chapter 4 Compound Types

Array notation is a second way to dereference a pointer; for instance, pn[0] is the same
as *pn.You should never dereference a pointer that has not been initialized to a proper
address.

Distinguishing Between a Pointer and the Pointed-to Value
Remember, if pt is a pointer-to-int, *pt is not a pointer-to-int; instead, *pt is the com-
plete equivalent to a type int variable. It is pt that is the pointer.

Here are some examples:

int * pt = new int; // assigns an address to the pointer pt
*pt = 5; // stores the value 5 at that address

Array Names
In most contexts, C++ treats the name of an array as equivalent to the address of the first
element of an array.

Here is an example:

int tacos[10]; // now tacos is the same as &tacos[0]

One exception is when you use the name of an array with the sizeof operator. In that
case, sizeof returns the size of the entire array, in bytes.

Pointer Arithmetic
C++ allows you to add an integer to a pointer. The result of adding one equals the origi-
nal address value plus a value equal to the number of bytes in the pointed-to object.You
can also subtract an integer from a pointer to take the difference between two pointers.
The last operation, which yields an integer, is meaningful only if the two pointers point
into the same array (pointing to one position past the end is allowed, too); it then yields
the separation between the two elements.

Here are some examples:

int tacos[10] = {5,2,8,4,1,2,2,4,6,8};

int * pt = tacos; // suppose pf and tacos are the address 3000
pt = pt + 1; // now pt is 3004 if a int is 4 bytes

int *pe = &tacos[9]; // pe is 3036 if an int is 4 bytes

pe = pe - 1; // now pe is 3032, the address of tacos[8]
int diff = pe - pt; // diff is 7, the separation between

// tacos[8] and tacos([1]

Dynamic Binding and Static Binding for Arrays
You can use an array declaration to create an array with static binding—that is, an array
whose size is set during the compilation process:

int tacos[10]; // static binding, size fixed at compile time

Pointers, Arrays, and Pointer Arithmetic

You use the new [] operator to create an array with dynamic binding (a dynamic
array)—that is, an array that is allocated and whose size can be set during runtime.You
free the memory with delete [] when you are done:
int size;
cin >> size;

int * pz = new int [sizel; // dynamic binding, size set at run time

delete [] pz; // free memory when finished

Array Notation and Pointer Notation

Using bracket array notation is equivalent to dereferencing a pointer:

tacos[0] means *tacos means the value at address tacos
tacos[3] means *(tacos + 3) means the value at address tacos + 3

This is true for both array names and pointer variables, so you can use either pointer
notation or array notation with pointers and array names.
Here are some examples:

int * pt = new int [10]; // pt points to block of 10 ints

*pt = 5; // set element number 0 to 5

ptl0] = 6; // reset element number 0 to 6

pt[9] = 44; // set tenth element (element number 9) to 44
int coats[10];

* (coats + 4) = 12; // set coats[4] to 12

Pointers and Strings

The special relationship between arrays and pointers extends to C-style strings. Consider
the following code:

char flower[10] = "rose";
cout << flower << "s are red\n";

The name of an array is the address of its first element, so £lower in the cout state-
ment is the address of the char element containing the character r.The cout object
assumes that the address of a char is the address of a string, so it prints the character at
that address and then continues printing characters until it runs into the null character
(\0). In short, if you give cout the address of a character, it prints everything from that
character to the first null character that follows it.

The crucial element here is not that flower is an array name but that £lower acts as
the address of a char.This implies that you can use a pointer-to-char variable as an argu-
ment to cout also because it, too, is the address of a char. Of course, that pointer should
point to the beginning of a string. We’ll check that out in a moment.

But what about the final part of the preceding cout statement? If £lower is actually the
address of the first character of a string, what is the expression "s are red\n"? To be
consistent with cout’s handling of string output, this quoted string should also be an

173

174

Chapter 4 Compound Types

address. And it is, for in C++ a quoted string, like an array name, serves as the address of
its first element. The preceding code doesn’t really send a whole string to cout; it just
sends the string address. This means strings in an array, quoted string constants, and strings
described by pointers are all handled equivalently. Each is really passed along as an address.
That’s certainly less work than passing each and every character in a string.

Note
With cout and with most C++ expressions, the name of an array of char, a pointer-to-

char, and a quoted string constant are all interpreted as the address of the first character
of a string.

Listing 4.20 illustrates the use of the different forms of strings. It uses two functions
from the string library. The strlen() function, which you’ve used before, returns the
length of a string. The strcpy () function copies a string from one location to another.
Both have function prototypes in the cstring header file (or string.h, on less up-to-
date implementations). The program also uses comments to showcase some pointer mis-
uses that you should try to avoid.

Listing 4.20 ptrstr.cpp

// ptrstr.cpp -- using pointers to strings

#include <iostream>

#include <cstrings> // declare strlen(), strcpy()
int main ()

{

using namespace std;

char animal[20] = "bear"; // animal holds bear

const char * bird = "wren"; // bird holds address of string

char * ps; // uninitialized

cout << animal << " and "; // display bear

cout << bird << "\n"; // display wren

// cout << ps << "\n"; //may display garbage, may cause a crash

cout << "Enter a kind of animal: ";

cin >> animal; // ok if input < 20 chars
// cin >> ps; Too horrible a blunder to try; ps doesn't
// point to allocated space

ps = animal; // set ps to point to string
cout << ps << "!\n"; // ok, same as using animal
cout << "Before using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;

cout << ps << " at " << (int *) ps << endl;

ps = new char[strlen(animal) + 1]; // get new storage
strcpy (ps, animal); // copy string to new storage

Pointers, Arrays, and Pointer Arithmetic

cout << "After using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;
cout << ps << " at " << (int *) ps << endl;

delete [] ps;

return 0;

Here is a sample run of the program in Listing 4.20:

bear and wren

Enter a kind of animal: fox
fox!

Before using strcpy():

fox at 0x0065£d30

fox at 0x0065£d30

After using strcpy():

fox at 0x0065£d30

fox at 0x004301c8

Program Notes

The program in Listing 4.20 creates one char array (animal) and two pointers-to-char
variables (bird and ps).The program begins by initializing the animal array to the
"bear" string, just as you've initialized arrays before. Then, the program does something
new. It initializes a pointer-to-char to a string:

const char * bird = "wren"; // bird holds address of string

Remember, "wren" actually represents the address of the string, so this statement
assigns the address of "wren" to the bird pointer. (Typically, a compiler sets aside an area
in memory to hold all the quoted strings used in the program source code, associating
each stored string with its address.) This means you can use the pointer bird just as you
would use the string "wren", as in this example:

cout << "A concerned " << bird << " speaks\n";

String literals are constants, which is why the code uses the const keyword in the dec-
laration. Using const in this fashion means you can use bird to access the string but not
to change it. Chapter 7 takes up the topic of const pointers in greater detail. Finally, the
pointer ps remains uninitialized, so it doesn’t point to any string. (As you know, that is
usually a bad idea, and this example is no exception.)

Next, the program illustrates that you can use the array name animal and the pointer
bird equivalently with cout. Both, after all, are the addresses of strings, and cout displays
the two strings ("bear" and "wren") stored at those addresses. If you activate the code that
makes the error of attempting to display ps, you might get a blank line, you might get
garbage displayed, and you might get a program crash. Creating an uninitialized pointer is
a bit like distributing a blank signed check:You lack control over how it will be used.

175

176

Chapter 4 Compound Types

For input, the situation is a bit different. It’s safe to use the array animal for input as
long as the input is short enough to fit into the array. It would not be proper to use bird
for input, however:

= Some compilers treat string literals as read-only constants, leading to a runtime error
if you try to write new data over them. That string literals be constants is the man-
dated behavior in C++, but not all compilers have made that change from older
behavior yet.

= Some compilers use just one copy of a string literal to represent all occurrences of
that literal in a program.

Let’s amplify the second point. C++ doesn’t guarantee that string literals are stored
uniquely. That is, if you use a string literal "wren" several times in a program, the compiler
might store several copies of the string or just one copy. If it does the latter, then setting
bird to point to one "wren" makes it point to the only copy of that string. Reading a
value into one string could affect what you thought was an independent string elsewhere.
In any case, because the bird pointer is declared as const, the compiler prevents any
attempt to change the contents of the location pointed to by bird.

Worse yet is trying to read information into the location to which ps points. Because
ps is not initialized, you don’t know where the information will wind up. It might even
overwrite information that is already in memory. Fortunately, it’s easy to avoid these prob-
lems:You just use a sufficiently large char array to receive input and don’t use string con-
stants to receive input or uninitialized pointers to receive input. (Or you can sidestep all
these issues and use std: : string objects instead of arrays.)

Caution

When you read a string into a program-style string, you should always use the address of
previously allocated memory. This address can be in the form of an array name or of a
pointer that has been initialized using new.

Next, notice what the following code accomplishes:

ps = animal; // set ps to point to string

cout << animal << " at " << (int *) animal << endl;
cout << ps << " at " << (int *) ps << endl;

It produces the following output:
fox at 0x0065£d30

fox at 0x0065£d30

Normally, if you give cout a pointer, it prints an address. But if the pointer is type
char *, cout displays the pointed-to string. If you want to see the address of the string, you
have to type cast the pointer to another pointer type, such as int *, which this code does.

Pointers, Arrays, and Pointer Arithmetic

So ps displays as the string "fox",but (int *) ps displays as the address where the string
is found. Note that assigning animal to ps does not copy the string; it copies the address.
This results in two pointers (animal and ps) to the same memory location and string.

To get a copy of a string, you need to do more. First, you need to allocate memory to
hold the string.You can do this by declaring a second array or by using new. The second
approach enables you to custom fit the storage to the string:

ps = new char[strlen(animal) + 1]; // get new storage

The string "fox" doesn’t completely fill the animal array, so this approach wastes
space. This bit of code uses strlen() to find the length of the string; it adds one to get
the length, including the null character. Then the program uses new to allocate just enough
space to hold the string.

Next, you need a way to copy a string from the animal array to the newly allocated
space. It doesn’t work to assign animal to ps because that just changes the address stored
in ps and thus loses the only way the program had to access the newly allocated memory.
Instead, you need to use the strcpy () library function:

strcpy (ps, animal); // copy string to new storage

The strepy () function takes two arguments. The first is the destination address, and
the second is the address of the string to be copied. It’s up to you to make certain that the
destination really is allocated and has sufficient space to hold the copy.That’s accomplished
here by using strlen() to find the correct size and using new to get free memory.

Note that by using strcpy () and new, you get two separate copies of "fox":

fox at 0x0065£fd30
fox at 0x004301c8

Also note that new located the new storage at a memory location quite distant from
that of the array animal.

Often you encounter the need to place a string into an array.You use the = operator
when you initialize an array; otherwise, you use strcpy () or strncpy ().You've seen the
strepy () function; it works like this:

char food[20] = "carrots"; // initialization
strcpy (food, "flan"); // otherwise

Note that something like the following can cause problems because the food array is
smaller than the string:

strcpy (food, "a picnic basket filled with many goodies");

In this case, the function copies the rest of the string into the memory bytes immedi-
ately following the array, which can overwrite other memory the program is using. To
avoid that problem, you should use strncpy () instead. It takes a third argument: the max-
imum number of characters to be copied. Be aware, however, that if this function runs out

177

178

Chapter 4 Compound Types

of space before it reaches the end of the string, it doesn’t add the null character. Thus, you
should use the function like this:

strncpy (food, "a picnic basket filled with many goodies", 19);
food[19] = '\0';

This copies up to 19 characters into the array and then sets the last element to the null
character. If the string is shorter than 19 characters, strnepy () adds a null character earlier
to mark the true end of the string.

Caution

Use strecpy () or strncpy (), not the assignment operator, to assign a string to an array.

Now that you've seen some aspects of using C-style strings and the cstring library,
you can appreciate the comparative simplicity of using the C++ string type.You (nor-
mally) don’t have to worry about a string overflowing an array, and you can use the
assignment operator instead of strcpy () or strncpy ().

Using new to Create Dynamic Structures

You’ve seen how it can be advantageous to create arrays during runtime rather than at
compile time. The same holds true for structures.You need to allocate space for only as
many structures as a program needs during a particular run. Again, the new operator is the
tool to use. With it, you can create dynamic structures. Again, dynamic means the memory
is allocated during runtime, not at compile time. Incidentally, because classes are much like
structures, you are able to use the techniques you’ll learn in this section for structures with
classes, too.

Using new with structures has two parts: creating the structure and accessing its mem-
bers. To create a structure, you use the structure type with new. For example, to create an
unnamed structure of the inflatable type and assign its address to a suitable pointer, you
can use the following:

inflatable * ps = new inflatable;

This assigns to ps the address of a chunk of free memory large enough to hold a struc-
ture of the inflatable type. Note that the syntax is exactly the same as it is for C++7%
built-in types.

The tricky part is accessing members. When you create a dynamic structure, you can’t
use the dot membership operator with the structure name because the structure has no
name. All you have is its address. C++ provides an operator just for this situation: the
arrow membership operator (->).This operator, formed by typing a hyphen and then a
greater-than symbol, does for pointers to structures what the dot operator does for struc-
ture names. For example, if ps points to a type inflatable structure, then ps->price is
the price member of the pointed-to structure (see Figure 4.11).

Pointers, Arrays, and Pointer Arithmetic 179

struct things

{
int good;
int bad;
}; : grubnose isa
structure.
—

things grubnose = {3, 453};
things * pt = &grubnose;
-~

| pt points to the
grubnose structure.

grubnose.good grubnose.bad

Use . operator with
structure name.

grubnose structure —l 3 | 453 |
Use —operator with | |
pointer—to—structure. pt —good pt— bad

Figure 4.11 Identifying structure members.
Tip
Sometimes new C++ users become confused about when to use the dot operator and when
to use the arrow operator to specify a structure member. The rule is simple: If the structure

identifier is the name of a structure, use the dot operator. If the identifier is a pointer to the
structure, use the arrow operator.

A second, uglier approach to accessing structure members is to realize that if ps is a
pointer to a structure, then *ps represents the pointed-to value—the structure itself. Then,
because *ps is a structure, (*ps) .price is the price member of the structure. C++’
operator precedence rules require that you use parentheses in this construction.

Listing 4.21 uses new to create an unnamed structure and demonstrates both pointer
notations for accessing structure members.

Listing 4.21 newstrct.cpp

// newstrct.cpp -- using new with a structure
#include <iostream>
struct inflatable // structure definition
{
char name [20] ;
float volume;
double price;
Vi
int main()
{

using namespace std;

180

Chapter 4 Compound Types

inflatable * ps = new inflatable; // allot memory for structure
cout << "Enter name of inflatable item: ";

cin.get (ps->name, 20); // method 1 for member access
cout << "Enter volume in cubic feet: ";

cin >> (*ps).volume; // method 2 for member access
cout << "Enter price: $";

cin >> ps->price;

cout << "Name: " << (*ps).name << endl; // method 2
cout << "Volume: " << ps->volume << " cubic feet\n"; // method 1
cout << "Price: $" << ps->price << endl; // method 1
delete ps; // free memory used by structure
return 0;

Here is a sample run of the program in Listing 4.21:

Enter name of inflatable item: Fabulous Frodo
Enter volume in cubic feet: 1.4

Enter price: $27.99

Name: Fabulous Frodo

Volume: 1.4 cubic feet

Price: $27.99

An Example of Using new and delete

Let’s look at an example that uses new and delete to manage storing string input from the
keyboard. Listing 4.22 defines a function getname () that returns a pointer to an input
string. This function reads the input into a large temporary array and then uses new []
with an appropriate size to create a chunk of memory sized to fit to the input string. Then
the function returns the pointer to the block. This approach could conserve a lot of mem-
ory for programs that read in a large number of strings. (In real life, where many of us live,
it would be easier to use the string class, which has the use of new and delete built in to
its design.)

Suppose your program has to read 1,000 strings and that the largest string might be 79
characters long, but most of the strings are much shorter than that. If you used char arrays
to hold the strings, you'd need 1,000 arrays of 80 characters each.That’s 80,000 bytes, and
much of that block of memory would wind up being unused. Alternatively, you could cre-
ate an array of 1,000 pointers to char and then use new to allocate only the amount of
memory needed for each string. That could save tens of thousands of bytes. Instead of hav-
ing to use a large array for every string, you fit the memory to the input. Even better, you
could also use new to find space to store only as many pointers as needed. Well, that’s a lit-
tle too ambitious for right now. Even using an array of 1,000 pointers is a little too ambi-
tious for right now, but Listing 4.22 illustrates some of the technique. Also just to illustrate
how delete works, the program uses it to free memory for reuse.

Pointers, Arrays, and Pointer Arithmetic

Listing 4.22 delete.cpp

// delete.cpp -- using the delete operator
#include <iostreams>

#include <cstring> // or string.h

using namespace std;

char * getname (void) ; // function prototype

int main()
char * name; // create pointer but no storage
name = getname () ; // assign address of string to name
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed
name = getname () ; // reuse freed memory
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed again
return 0;

char * getname () // return pointer to new string
char temp[80]; // temporary storage

cout << "Enter last name: ";

cin >> temp;

char * pn = new char[strlen(temp) + 1];

strcpy (pn, temp) ; // copy string into smaller space

return pn; // temp lost when function ends

Here is a sample run of the program in Listing 4.22:

Enter last name: Fredeldumpkin
Fredeldumpkin at 0x004326Db8
Enter last name: Pook

Pook at 0x004301c8

Program Notes

Consider the function getname () in the program in Listing 4.22. It uses cin to place an
input word into the temp array. Next, it uses new to allocate new memory to hold the
word. Including the null character, the program needs strlen(temp) + 1 characters to
store the string, so that’s the value given to new. After the space becomes available,
getname () uses the standard library function strepy () to copy the string from temp to
the new block.The function doesn’t check to see whether the string fits, but getname ()

181

182

Chapter 4 Compound Types

covers that by requesting the right number of bytes with new. Finally, the function returns
pn, the address of the string copy.

In main (), the return value (the address) is assigned to the pointer name. This pointer is
defined in main (), but it points to the block of memory allocated in the getname () func-
tion. The program then prints the string and the address of the string.

Next, after it frees the block pointed to by name, main () calls getname () a second
time. C++ doesn’t guarantee that newly freed memory is the first to be chosen the next
time new is used, and in this sample run, it isn’t.

Note in this example that getname () allocates memory and main () frees it. It’s usually
not a good idea to put new and delete in separate functions because that makes it easier
to forget to use delete. But this example does separate new from delete just to show that
it is possible.

To appreciate some of the more subtle aspects of this program, you should know a little
more about how C++ handles memory. So let’s preview some material that’s covered
more fully in Chapter 9.

Automatic Storage, Static Storage, and Dynamic Storage

C++ has three ways of managing memory for data, depending on the method used to
allocate memory: automatic storage, static storage, and dynamic storage, sometimes called
the free store or heap. Data objects allocated in these three ways differ from each other in
how long they remain in existence. We’ll take a quick look at each type. (C++11 adds a
fourth form called thread storage that we’ll discuss briefly in Chapter 9.)

Automatic Storage

Ordinary variables defined inside a function use automatic storage and are called automatic
variables. These terms mean that the variables come into existence automatically when the
function containing them is invoked, and they expire when the function terminates. For
example, the temp array in Listing 4.22 exists only while the getname () function is active.
‘When program control returns to main (), the memory used for temp is freed automati-
cally. If getname () returned the address of temp, the name pointer in main() would be left
pointing to a memory location that would soon be reused. That’s one reason you have to
use new in getname () . Actually, automatic values are local to the block that contains them.
A block is a section of code enclosed between braces. So far, all our blocks have been entire
functions. But as you'll see in the next chapter, you can have blocks within a function. If
you define a variable inside one of those blocks, it exists only while the program is exe-
cuting statements inside the block.

Automatic variables typically are stored on a stack. This means that when program exe-
cution enters a block of code, its variables are added consecutively to the stack in memory
and then are freed in reverse order when execution leaves the block. (This is called a last-
in, first-out, or LIFO, process.) So the stack grows and shrinks as execution proceeds.

Pointers, Arrays, and Pointer Arithmetic

Static Storage

Static storage is storage that exists throughout the execution of an entire program.There
are two ways to make a variable static. One is to define it externally, outside a function.
The other is to use the keyword static when declaring a variable:

static double fee = 56.50;

Under K&R C, you can initialize only static arrays and structures, whereas C++
Release 2.0 (and later) and ANSI C allow you to initialize automatic arrays and structures,
too. However, as you may have discovered, some C++ implementations do not yet imple-
ment initialization for automatic arrays and structures.

Chapter 9 discusses static storage in more detail. The main point you should note now
about automatic and static storage is that these methods rigidly define the lifetime of a
variable. Either the variable exists for the entire duration of a program (a static variable) or
it exists only while a particular function is being executed (an automatic variable).

Dynamic Storage

The new and delete operators provide a more flexible approach than automatic and static
variables. They manage a pool of memory, which C++ refers to as the free store or heap.
This pool is separate from the memory used for static and automatic variables. As Listing
4.22 shows, new and delete enable you to allocate memory in one function and free it in
another. Thus, the lifetime of the data is not tied arbitrarily to the life of the program or
the life of a function. Using new and delete together gives you much more control over
how a program uses memory than does using ordinary variables. However, memory man-
agement becomes more complex. In a stack, the automatic addition and removal mecha-
nism results in the part of memory in use always being contiguous. But the interplay
between new and delete can leave holes in the free store, making keeping track of where
to allocate new memory requests more difficult.

Stacks, Heaps, and Memory Leaks

What happens if you don’t call delete after creating a variable on the free store (or heap)
with the new operator? The variable or construct dynamically allocated on the free store
continues to persist if delete is not called, even though the memory that contains the
pointer has been freed due to rules of scope and object lifetime. In essence, you have no
way to access the construct on the free store because the pointer to the memory that con-
tains it is gone. You have now created a memory leak. Memory that has been leaked remains
unusable through the life of the program; it’s been allocated but can’t be deallocated.

In extreme (though not uncommon) cases, memory leaks can be so severe that they use up
all the memory available to the application, causing it to crash with an out-of-memory error. In
addition, these leaks may negatively affect some operating systems or other applications run-
ning in the same memory space, causing them, in turn, to fail.

Even the best programmers and software companies create memory leaks. To avoid them,
it's best to get into the habit of joining your new and delete operators immediately, plan-
ning for and entering the deletion of your construct as soon as you dynamically allocate it
on the free store. C++’s smart pointers (Chapter 16) help automate the task.

183

184

Chapter 4 Compound Types

Note

Pointers are among the most powerful of C++ tools. They are also the most dangerous
because they permit computer-unfriendly actions, such as using an uninitialized pointer to
access memory or attempting to free the same memory block twice. Furthermore, until you
get used to pointer notation and pointer concepts through practice, pointers can be confus-
ing. Because pointers are an important part of C++ programming, they weave in and out of
future discussions in this book. This book discusses pointers several more times. The hope
is that each exposure will make you more comfortable with them.

Combinations of Types

This chapter has introduced arrays, structures, and pointers. These can be combined in
various ways, so let’s review some of the possibilities, starting with a structure:

struct antarctica_years_end

{
int year;
/* some really interesting data, etc. */
Vi
We can create variables of this type:

antarctica years end s01, s02, s03; // s01, s02, s03 are structures

We can then access members using the membership operator:

sO0l.year = 1998;

We can create a pointer to such a structure:
antarctica years end * pa = &s02;

Provided the pointer has been set to a valid address, we then can use the indirect
membership operator to access members:
pa->year = 1999;

We can create arrays of structures:

antarctica_years end trio[3]; // array of 3 structures

We then can use the membership operator to access members of an element:
trio[0] .year = 2003; // trio[0] is a structure
Here, trio is an array, but trio[0] is a structure, and trio[0] .year is a member of

that structure. Because an array name is a pointer, we also can use the indirect member-
ship operator:

(trio+l) ->year = 2004; // same as trio[l].year = 2004;

We can create an array of pointers:

const antarctica years end * arp[3] = {&s01, &s02, &s03};

