
ptg7068951

361Pointers to Functions

ar[mid] = '|';

subdivide(ar, low, mid, level - 1);

subdivide(ar, mid, high, level - 1);

}

Here is the output of the program in Listing 7.17:

| |

| | |

| | | | |

| | | | | | | | |

| | | | | | | | | | | | | | | | |

| |

|||

Program Notes
The subdivide() function in Listing 7.17 uses the variable level to control the recur-
sion level.When the function calls itself, it reduces level by one, and the function with a
level of 0 terminates. Note that subdivide() calls itself twice, once for the left subdivi-
sion and once for the right subdivision.The original midpoint becomes the right end for
one call and the left end for the other call. Notice that the number of calls grows geomet-
rically.That is, one call generates two, which generate four calls, which generate eight, and
so on.That’s why the level 6 call is able to fill in 64 elements (26 = 64).This continued
doubling of the number of function calls (and hence of the number of variables stored)
make this form of recursion a poor choice if many levels of recursion are required. But it
is an elegant and simple choice if the necessary levels of recursion are few.

Pointers to Functions
No discussion of C or C++ functions would be complete without mention of pointers to
functions.We’ll take a quick look at this topic and leave the full exposition of the possibil-
ities to more advanced texts.

Functions, like data items, have addresses.A function’s address is the memory address at
which the stored machine language code for the function begins. Normally, it’s neither
important nor useful for you or the user to know that address, but it can be useful to a
program. For example, it’s possible to write a function that takes the address of another
function as an argument.That enables the first function to find the second function and
run it.This approach is more awkward than simply having the first function call the sec-
ond one directly, but it leaves open the possibility of passing different function addresses at
different times.That means the first function can use different functions at different times.

ptg7068951

362 Chapter 7 Functions: C++’s Programming Modules

Function Pointer Basics
Let’s clarify this process with an example. Suppose you want to design an estimate()
function that estimates the amount of time necessary to write a given number of lines of
code, and you want different programmers to use the function. Part of the code for
estimate() will be the same for all users, but the function will allow each programmer to
provide his or her own algorithm for estimating time.The mechanism for that will be to
pass to estimate() the address of the particular algorithm function the programmer
wants to use.To implement this plan, you need to be able to do the following:

n Obtain the address of a function.
n Declare a pointer to a function.
n Use a pointer to a function to invoke the function.

Obtaining the Address of a Function
Obtaining the address of a function is simple:You just use the function name without
trailing parentheses.That is, if think() is a function, then think is the address of the func-
tion.To pass a function as an argument, you pass the function name. Be sure you distin-
guish between passing the address of a function and passing the return value of a function:

process(think); // passes address of think() to process()

thought(think()); // passes return value of think() to thought()

The process() call enables the process() function to invoke the think() function
from within process().The thought() call first invokes the think() function and then
passes the return value of think() to the thought() function.

Declaring a Pointer to a Function
To declare pointers to a data type, the declaration has had to specify exactly to what type
the pointer points. Similarly, a pointer to a function has to specify to what type of func-
tion the pointer points.This means the declaration should identify the function’s return
type and the function’s signature (its argument list).That is, the declaration should provide
the same information about a function that a function prototype does. For example, sup-
pose Pam LeCoder has written a time-estimating function with the following prototype:

double pam(int); // prototype

Here’s what a declaration of an appropriate pointer type looks like:

double (*pf)(int); // pf points to a function that takes

// one int argument and that

// returns type double

Tip
In general, to declare a pointer to a particular kind of function, you can first write a prototype
for a regular function of the desired kind and then replace the function name with an expres-
sion in the form (*pf). In this case, pf is a pointer to a function of that type.

ptg7068951

363Pointers to Functions

The declaration requires the parentheses around *pf to provide the proper operator
precedence. Parentheses have a higher precedence than the * operator, so *pf(int) means
pf() is a function that returns a pointer, whereas (*pf)(int) means pf is a pointer to a
function:

double (*pf)(int); // pf points to a function that returns double

double *pf(int); // pf() a function that returns a pointer-to-double

After you declare pf properly, you can assign to it the address of a matching function:

double pam(int);

double (*pf)(int);

pf = pam; // pf now points to the pam() function

Note that pam() has to match pf in both signature and return type.The compiler rejects
nonmatching assignments:

double ned(double);

int ted(int);

double (*pf)(int);

pf = ned; // invalid -- mismatched signature

pf = ted; // invalid -- mismatched return types

Let’s return to the estimate() function mentioned earlier. Suppose you want to pass
to it the number of lines of code to be written and the address of an estimating algorithm,
such as the pam() function. It could have the following prototype:

void estimate(int lines, double (*pf)(int));

This declaration says the second argument is a pointer to a function that has an int
argument and a double return value.To have estimate() use the pam() function, you
pass pam()’s address to it:

estimate(50, pam); // function call telling estimate() to use pam()

Clearly, the tricky part about using pointers to functions is writing the prototypes,
whereas passing the address is very simple.

Using a Pointer to Invoke a Function
Now we get to the final part of the technique, which is using a pointer to call the
pointed-to function.The clue comes in the pointer declaration.There, recall, (*pf) plays
the same role as a function name.Thus, all you have to do is use (*pf) as if it were a func-
tion name:

double pam(int);

double (*pf)(int);

pf = pam; // pf now points to the pam() function

double x = pam(4); // call pam() using the function name

double y = (*pf)(5); // call pam() using the pointer pf

ptg7068951

364 Chapter 7 Functions: C++’s Programming Modules

Actually, C++ also allows you to use pf as if it were a function name:

double y = pf(5); // also call pam() using the pointer pf

Using the first form is uglier, but it provides a strong visual reminder that the code is
using a function pointer.

History Versus Logic
Holy syntax! How can pf and (*pf) be equivalent? One school of thought maintains that
because pf is a pointer to a function, *pf is a function; hence, you should use (*pf)() as
a function call. A second school maintains that because the name of a function is a pointer
to that function, a pointer to that function should act like the name of a function; hence you
should use pf() as a function call. C++ takes the compromise view that both forms are cor-
rect, or at least can be allowed, even though they are logically inconsistent with each other.
Before you judge that compromise too harshly, reflect that the ability to hold views that are
not logically self-consistent is a hallmark of the human mental process.

A Function Pointer Example
Listing 7.18 demonstrates using function pointers in a program. It calls the estimate()

function twice, once passing the betsy() function address and once passing the pam()

function address. In the first case, estimate() uses betsy() to calculate the number of
hours necessary, and in the second case, estimate() uses pam() for the calculation.This
design facilitates future program development.When Ralph develops his own algorithm
for estimating time, he doesn’t have to rewrite estimate(). Instead, he merely needs to
supply his own ralph() function, making sure it has the correct signature and return
type. Of course, rewriting estimate() isn’t a difficult task, but the same principle applies
to more complex code.Also the function pointer method allows Ralph to modify the
behavior of estimate(), even if he doesn’t have access to the source code for
estimate().

Listing 7.18 fun_ptr.cpp

// fun_ptr.cpp -- pointers to functions

#include <iostream>

double betsy(int);

double pam(int);

// second argument is pointer to a type double function that

// takes a type int argument

void estimate(int lines, double (*pf)(int));

int main()

{

using namespace std;

int code;

ptg7068951

365Pointers to Functions

cout << "How many lines of code do you need? ";

cin >> code;

cout << "Here's Betsy's estimate:\n";

estimate(code, betsy);

cout << "Here's Pam's estimate:\n";

estimate(code, pam);

return 0;

}

double betsy(int lns)

{

return 0.05 * lns;

}

double pam(int lns)

{

return 0.03 * lns + 0.0004 * lns * lns;

}

void estimate(int lines, double (*pf)(int))

{

using namespace std;

cout << lines << " lines will take ";

cout << (*pf)(lines) << " hour(s)\n";

}

Here is a sample run of the program in Listing 7.18:

How many lines of code do you need? 30

Here's Betsy's estimate:

30 lines will take 1.5 hour(s)

Here's Pam's estimate:

30 lines will take 1.26 hour(s)

Here is a second sample run of the program:

How many lines of code do you need? 100

Here's Betsy's estimate:

100 lines will take 5 hour(s)

Here's Pam's estimate:

100 lines will take 7 hour(s)

Variations on the Theme of Function Pointers
With function pointers, the notation can get intimidating. Let’s look at an example that
illustrates some of the challenges of function pointers and ways of dealing with them.To
begin, here are prototypes for some functions that share the same signature and return type:

ptg7068951

366 Chapter 7 Functions: C++’s Programming Modules

const double * f1(const double ar[], int n);

const double * f2(const double [], int);

const double * f3(const double *, int);

The signatures might look different, but they are the same. First, recall that in a func-
tion prototype parameter list const double ar[] and const double * ar have exactly
the same meaning. Second, recall that in a prototype you can omit identifiers.Therefore,
const double ar[] can be reduced to const double [], and const double * ar can
be reduced to const double *. So all the function signatures shown previously have the
same meaning. Function definitions, on the other hand, do provide identifiers, so either
const double ar[] or const double * ar will serve in that context.

Next, suppose you wish to declare a pointer that can point to one of these three func-
tions.The technique, you’ll recall, is if pa is the desired pointer, take the prototype for a
target function and replace the function name with (*pa):

const double * (*p1)(const double *, int);

This can be combined with initialization:

const double * (*p1)(const double *, int) = f1;

With the C++11 automatic type deduction feature, you can simplify this a bit:

auto p2 = f2; // C++11 automatic type deduction

Now consider the following statements:

cout << (*p1)(av,3) << ": " << *(*p1)(av,3) << endl;

cout << p2(av,3) << ": " << *p2(av,3) << endl;

Both (*p1)(av,3) and p2(av,3), recall, represent calling the pointed-to functions
(f1() and f2(), in this case) with av and 3 as arguments.Therefore, what should print are
the return values of these two functions.The return values are type const double * (that
is, address of double values). So the first part of each cout expression should print the
address of a double value.To see the actual value stored at the addresses, we need to apply
the * operator to these addresses, and that’s what the expressions *(*p1)(av,3) and
*p2(av,3) do.

With three functions to work with, it could be handy to have an array of function
pointers.Then one can use a for loop to call each function, via its pointer, in turn.What
would that look like? Clearly, it should look something like the declaration of a single
pointer, but there should be a [3] somewhere to indicate an array of three pointers.The
question is where.And here’s the answer (including initialization):

const double * (*pa[3])(const double *, int) = {f1,f2,f3};

Why put the [3] there? Well, pa is an array of three things, and the starting point for
declaring an array of three things is this: pa[3].The rest of the declaration is about what
kind of thing is to be placed in the array. Operator precedence ranks [] higher than *, so
*pa[3] says pa is an array of three pointers.The rest of the declaration indicates what
each pointer points to: a function with a signature of const double *, int and a return

ptg7068951

367Pointers to Functions

type of const double *. Hence, pa is an array of three pointers, each of which is a
pointer to a function that takes a const double * and int as arguments and returns a
const double *.

Can we use auto here? No.Automatic type deduction works with a single initializer
value, not an initialization list. But now that we have the array pa, it is simple to declare a
pointer of the matching type:

auto pb = pa;

The name of an array, as you’ll recall, is a pointer to its first element, so both pa and pb

are pointers to a pointer to a function.
How can we use them to call a function? Both pa[i] and pb[i] represent pointers in

the array, so you can use either of the function call notations with either of them:

const double * px = pa[0](av,3);

const double * py = (*pb[1])(av,3);

And you can apply the * operator to get the pointed-to double value:

double x = *pa[0](av,3);

double y = *(*pb[1])(av,3);

Something else you can do (and who wouldn’t want to?) is create a pointer to the
whole array. Because the array name pa already is a pointer to a function pointer, a pointer
to the array would be a pointer to a pointer to a pointer.This sounds intimidating, but
because the result can be initialed with a single value, you can use auto:

auto pc = &pa; // C++11 automatic type deduction

What if you prefer to do it yourself? Clearly, the declaration should resemble the decla-
ration for pa, but because there is one more level of indirection, we’ll need one more *
stuck somewhere. In particular, if we call the new pointer pd, we need to indicate that it is
pointer, not an array name.This suggests the heart of the declaration should be (*pd)[3].
The parentheses bind the pd identifier to the *:

*pd[3] // an array of 3 pointers

(*pd)[3] // a pointer to an array of 3 elements

In other words, pd is a pointer, and it points to an array of three things.What those
things are is described by the rest of the original declaration of pa.This approach yields
the following:

const double *(*(*pd)[3])(const double *, int) = &pa;

To call a function, realize that if pd points to an array, then *pd is the array and
(*pd)[i] is an array element, which is a pointer to a function.The simpler notation, then,
for the function call is (*pd)[i](av,3), and *(*pd)[i](av,3) would be the value that
the returned pointer points to.Alternatively, you could use second syntax for invoking a
function with a pointer and use (*(*pd)[i])(av,3) for the call and *(*(*pd)[i])
(av,3) for the pointed-to double value.

ptg7068951

368 Chapter 7 Functions: C++’s Programming Modules

Be aware of the difference between pa, which as an array name is an address, and &pa.
As you’ve seen before, in most contexts pa is the address of the first element of the
array—that is, &pa[0].Therefore, it is the address of a single pointer. But &pa is the address
of the entire array (that is, of a block of three pointers). Numerically, pa and &pa may have
the same value, but they are of different types. One practical difference is that pa+1 is the
address of the next element in the array, whereas &pa+1 is the address of the next block of
12 bytes (assuming addresses are 4 bytes) following the pa array.Another difference is that
you dereference pa once to get the value of the first element and you deference &pa twice
to get the same value:

**&pa == *pa == pa[0]

Listing 7.19 puts this discussion to use. For illustrative purposes, the functions f1(), and
so on, have been kept embarrassingly simple.The program shows, as comments, the
C++98 alternatives to using auto.

Listing 7.19 arfupt.cpp

// arfupt.cpp -- an array of function pointers

#include <iostream>

// various notations, same signatures

const double * f1(const double ar[], int n);

const double * f2(const double [], int);

const double * f3(const double *, int);

int main()

{

using namespace std;

double av[3] = {1112.3, 1542.6, 2227.9};

// pointer to a function

const double *(*p1)(const double *, int) = f1;

auto p2 = f2; // C++11 automatic type deduction

// pre-C++11 can use the following code instead

// const double *(*p2)(const double *, int) = f2;

cout << "Using pointers to functions:\n";

cout << " Address Value\n";

cout << (*p1)(av,3) << ": " << *(*p1)(av,3) << endl;

cout << p2(av,3) << ": " << *p2(av,3) << endl;

// pa an array of pointers

// auto doesn't work with list initialization

const double *(*pa[3])(const double *, int) = {f1,f2,f3};

// but it does work for initializing to a single value

// pb a pointer to first element of pa

auto pb = pa;

// pre-C++11 can use the following code instead

ptg7068951

369Pointers to Functions

// const double *(**pb)(const double *, int) = pa;

cout << "\nUsing an array of pointers to functions:\n";

cout << " Address Value\n";

for (int i = 0; i < 3; i++)

cout << pa[i](av,3) << ": " << *pa[i](av,3) << endl;

cout << "\nUsing a pointer to a pointer to a function:\n";

cout << " Address Value\n";

for (int i = 0; i < 3; i++)

cout << pb[i](av,3) << ": " << *pb[i](av,3) << endl;

// what about a pointer to an array of function pointers

cout << "\nUsing pointers to an array of pointers:\n";

cout << " Address Value\n";

// easy way to declare pc

auto pc = &pa;

// pre-C++11 can use the following code instead

// const double *(*(*pc)[3])(const double *, int) = &pa;

cout << (*pc)[0](av,3) << ": " << *(*pc)[0](av,3) << endl;

// hard way to declare pd

const double *(*(*pd)[3])(const double *, int) = &pa;

// store return value in pdb

const double * pdb = (*pd)[1](av,3);

cout << pdb << ": " << *pdb << endl;

// alternative notation

cout << (*(*pd)[2])(av,3) << ": " << *(*(*pd)[2])(av,3) << endl;

// cin.get();

return 0;

}

// some rather dull functions

const double * f1(const double * ar, int n)

{

return ar;

}

const double * f2(const double ar[], int n)

{

return ar+1;

}

const double * f3(const double ar[], int n)

{

return ar+2;

}

ptg7068951

370 Chapter 7 Functions: C++’s Programming Modules

And here is the output:

Using pointers to functions:

Address Value

002AF9E0: 1112.3

002AF9E8: 1542.6

Using an array of pointers to functions:

Address Value

002AF9E0: 1112.3

002AF9E8: 1542.6

002AF9F0: 2227.9

Using a pointer to a pointer to a function:

Address Value

002AF9E0: 1112.3

002AF9E8: 1542.6

002AF9F0: 2227.9

Using pointers to an array of pointers:

Address Value

002AF9E0: 1112.3

002AF9E8: 1542.6

002AF9F0: 2227.9

The addresses shown are the locations of the double values in the av array.
This example may seem esoteric, but pointers to arrays of pointers to functions are not

unheard of. Indeed, the usual implementation of virtual class methods (see Chapter 13,
“Class Inheritance”) uses this technique. Fortunately, the compiler handles the details.

Appreciating auto
One of the goals of C++11 is to make C++ easier to use, letting the programmer concen-
trate more on design and less on details. Listing 7.19 surely illustrates this point:

auto pc = &pa; // C++11 automatic type deduction

const double *(*(*pd)[3])(const double *, int) = &pa; // C++98, do it yourself

The automatic type deduction feature reflects a philosophical shift in the role of the com-
piler. In C++98, the compiler uses its knowledge to tell you when you are wrong. In C++11,
at least with this feature, it uses its knowledge to help you get the right declaration.

There is a potential drawback. Automatic type deduction ensures that the type of the vari-
able matches the type of the initializer, but it still is possible that you might provide the
wrong type of initializer:

auto pc = *pa; // oops! used *pa instead of &pa

This declaration would make pc match the type of *pa, and that would result in a compile-
time error when Listing 7.19 later uses pc, assuming that it is of the same type as &pa.

ptg7068951

371Summary

Simplifying with typedef
C++ does provide tools other than auto for simplifying declarations.You may recall from
Chapter 5,“Loops and Relational Expressions,” that the typedef keyword allows you to
create a type alias:

typedef double real; // makes real another name for double

The technique is to declare the alias as if it were an identifier and to insert the key-
word typedef at the beginning. So you can do this to make p_fun an alias for the func-
tion pointer type used in Listing 7.19:

typedef const double *(*p_fun)(const double *, int); // p_fun now a type name

p_fun p1 = f1; // p1 points to the f1() function

You then can use this type to build elaborations:

p_fun pa[3] = {f1,f2,f3}; // pa an array of 3 function pointers

p_fun (*pd)[3] = &pa; // pd points to an array of 3 function pointers

Not only does typedef save you some typing, it makes writing the code less error
prone, and it makes the program easier to understand.

Summary
Functions are the C++ programming modules.To use a function, you need to provide a
definition and a prototype, and you have to use a function call.The function definition is
the code that implements what the function does.The function prototype describes the
function interface: how many and what kinds of values to pass to the function and what
sort of return type, if any, to get from it.The function call causes the program to pass the
function arguments to the function and to transfer program execution to the function
code.

By default, C++ functions pass arguments by value.This means that the formal param-
eters in the function definition are new variables that are initialized to the values provided
by the function call.Thus, C++ functions protect the integrity of the original data by
working with copies.

C++ treats an array name argument as the address of the first element of the array.
Technically, this is still passing by value because the pointer is a copy of the original
address, but the function uses the pointer to access the contents of the original array.
When you declare formal parameters for a function (and only then), the following two
declarations are equivalent:
typeName arr[];

typeName * arr;

Both of these mean that arr is a pointer to typeName.When you write the function
code, however, you can use arr as if it were an array name in order to access elements:
arr[i]. Even when passing pointers, you can preserve the integrity of the original data
by declaring the formal argument to be a pointer to a const type. Because passing the

