
```
ar[mid] = '|';
subdivide(ar, low, mid, level - 1);
subdivide(ar, mid, high, level - 1);
```

Here is the output of the program in Listing 7.17:

Program Notes

The subdivide() function in Listing 7.17 uses the variable level to control the recursion level. When the function calls itself, it reduces level by one, and the function with a level of 0 terminates. Note that subdivide() calls itself twice, once for the left subdivision and once for the right subdivision. The original midpoint becomes the right end for one call and the left end for the other call. Notice that the number of calls grows geometrically. That is, one call generates two, which generate four calls, which generate eight, and so on. That's why the level 6 call is able to fill in 64 elements ($2^6 = 64$). This continued doubling of the number of function calls (and hence of the number of variables stored) make this form of recursion a poor choice if many levels of recursion are required. But it is an elegant and simple choice if the necessary levels of recursion are few.

Pointers to Functions

No discussion of C or C++ functions would be complete without mention of pointers to functions. We'll take a quick look at this topic and leave the full exposition of the possibilities to more advanced texts.

Functions, like data items, have addresses. A function's address is the memory address at which the stored machine language code for the function begins. Normally, it's neither important nor useful for you or the user to know that address, but it can be useful to a program. For example, it's possible to write a function that takes the address of another function as an argument. That enables the first function to find the second function and run it. This approach is more awkward than simply having the first function call the second one directly, but it leaves open the possibility of passing different function addresses at different times. That means the first function can use different functions at different times.

Function Pointer Basics

Let's clarify this process with an example. Suppose you want to design an estimate() function that estimates the amount of time necessary to write a given number of lines of code, and you want different programmers to use the function. Part of the code for estimate() will be the same for all users, but the function will allow each programmer to provide his or her own algorithm for estimating time. The mechanism for that will be to pass to estimate() the address of the particular algorithm function the programmer wants to use. To implement this plan, you need to be able to do the following:

- Obtain the address of a function.
- Declare a pointer to a function.
- Use a pointer to a function to invoke the function.

Obtaining the Address of a Function

Obtaining the address of a function is simple: You just use the function name without trailing parentheses. That is, if think() is a function, then think is the address of the function. To pass a function as an argument, you pass the function name. Be sure you distinguish between passing the *address* of a function and passing the *return value* of a function:

process(think); // passes address of think() to process()
thought(think()); // passes return value of think() to thought()

The process() call enables the process() function to invoke the think() function from within process(). The thought() call first invokes the think() function and then passes the return value of think() to the thought() function.

Declaring a Pointer to a Function

To declare pointers to a data type, the declaration has had to specify exactly to what type the pointer points. Similarly, a pointer to a function has to specify to what type of function the pointer points. This means the declaration should identify the function's return type and the function's signature (its argument list). That is, the declaration should provide the same information about a function that a function prototype does. For example, suppose Pam LeCoder has written a time-estimating function with the following prototype:

```
double pam(int); // prototype
```

Here's what a declaration of an appropriate pointer type looks like:

Tip

In general, to declare a pointer to a particular kind of function, you can first write a prototype for a regular function of the desired kind and then replace the function name with an expression in the form (*pf). In this case, pf is a pointer to a function of that type.

The declaration requires the parentheses around *pf to provide the proper operator precedence. Parentheses have a higher precedence than the * operator, so *pf(int) means pf() is a function that returns a pointer, whereas (*pf)(int) means pf is a pointer to a function:

```
double (*pf)(int); // pf points to a function that returns double
double *pf(int); // pf() a function that returns a pointer-to-double
```

After you declare pf properly, you can assign to it the address of a matching function:

Note that pam() has to match pf in both signature and return type. The compiler rejects nonmatching assignments:

Let's return to the estimate() function mentioned earlier. Suppose you want to pass to it the number of lines of code to be written and the address of an estimating algorithm, such as the pam() function. It could have the following prototype:

```
void estimate(int lines, double (*pf)(int));
```

This declaration says the second argument is a pointer to a function that has an int argument and a double return value. To have estimate() use the pam() function, you pass pam()'s address to it:

estimate(50, pam); // function call telling estimate() to use pam()

Clearly, the tricky part about using pointers to functions is writing the prototypes, whereas passing the address is very simple.

Using a Pointer to Invoke a Function

Now we get to the final part of the technique, which is using a pointer to call the pointed-to function. The clue comes in the pointer declaration. There, recall, (*pf) plays the same role as a function name. Thus, all you have to do is use (*pf) as if it were a function name:

Actually, C++ also allows you to use pf as if it were a function name:

double y = pf(5); // also call pam() using the pointer pf

Using the first form is uglier, but it provides a strong visual reminder that the code is using a function pointer.

History Versus Logic

Holy syntax! How can pf and (*pf) be equivalent? One school of thought maintains that because pf is a pointer to a function, *pf is a function; hence, you should use (*pf) () as a function call. A second school maintains that because the name of a function is a pointer to that function, a pointer to that function should act like the name of a function; hence you should use pf() as a function call. C++ takes the compromise view that both forms are correct, or at least can be allowed, even though they are logically inconsistent with each other. Before you judge that compromise too harshly, reflect that the ability to hold views that are not logically self-consistent is a hallmark of the human mental process.

A Function Pointer Example

Listing 7.18 demonstrates using function pointers in a program. It calls the estimate() function twice, once passing the betsy() function address and once passing the pam() function address. In the first case, estimate() uses betsy() to calculate the number of hours necessary, and in the second case, estimate() uses pam() for the calculation. This design facilitates future program development. When Ralph develops his own algorithm for estimating time, he doesn't have to rewrite estimate(). Instead, he merely needs to supply his own ralph() function, making sure it has the correct signature and return type. Of course, rewriting estimate() isn't a difficult task, but the same principle applies to more complex code. Also the function pointer method allows Ralph to modify the behavior of estimate().

Listing 7.18 fun_ptr.cpp

```
// fun_ptr.cpp -- pointers to functions
#include <iostream>
double betsy(int);
double pam(int);
// second argument is pointer to a type double function that
// takes a type int argument
void estimate(int lines, double (*pf)(int));
int main()
{
    using namespace std;
    int code;
}
```

```
cout << "How many lines of code do you need? ";
cin >> code;
cout << "Here's Betsy's estimate:\n";
estimate(code, betsy);
cout << "Here's Pam's estimate:\n";
estimate(code, pam);
return 0;
}
double betsy(int lns)
{
return 0.05 * lns;
}
double pam(int lns)
{
return 0.03 * lns + 0.0004 * lns * lns;
}
void estimate(int lines, double (*pf)(int))
{
using namespace std;
cout << lines << " lines will take ";
cout << (*pf)(lines) << " hour(s)\n";
}
```

Here is a sample run of the program in Listing 7.18:

How many lines of code do you need? 30 Here's Betsy's estimate: 30 lines will take 1.5 hour(s) Here's Pam's estimate: 30 lines will take 1.26 hour(s)

Here is a second sample run of the program:

How many lines of code do you need? 100 Here's Betsy's estimate: 100 lines will take 5 hour(s) Here's Pam's estimate: 100 lines will take 7 hour(s)

Variations on the Theme of Function Pointers

With function pointers, the notation can get intimidating. Let's look at an example that illustrates some of the challenges of function pointers and ways of dealing with them. To begin, here are prototypes for some functions that share the same signature and return type:

```
const double * f1(const double ar[], int n);
const double * f2(const double [], int);
const double * f3(const double *, int);
```

The signatures might look different, but they are the same. First, recall that in a function prototype parameter list const double ar[] and const double * ar have exactly the same meaning. Second, recall that in a prototype you can omit identifiers. Therefore, const double ar[] can be reduced to const double [], and const double * ar can be reduced to const double *. So all the function signatures shown previously have the same meaning. Function definitions, on the other hand, do provide identifiers, so either const double ar[] or const double * ar will serve in that context.

Next, suppose you wish to declare a pointer that can point to one of these three functions. The technique, you'll recall, is if pa is the desired pointer, take the prototype for a target function and replace the function name with (*pa):

```
const double * (*p1)(const double *, int);
```

This can be combined with initialization:

```
const double * (*p1)(const double *, int) = f1;
```

With the C++11 automatic type deduction feature, you can simplify this a bit:

auto p2 = f2; // C++11 automatic type deduction

Now consider the following statements:

```
cout << (*p1)(av,3) << ": " << *(*p1)(av,3) << endl;
cout << p2(av,3) << ": " << *p2(av,3) << endl;</pre>
```

Both (*p1) (av, 3) and p2 (av, 3), recall, represent calling the pointed-to functions (f1() and f2(), in this case) with av and 3 as arguments. Therefore, what should print are the return values of these two functions. The return values are type const double * (that is, address of double values). So the first part of each cout expression should print the address of a double value. To see the actual value stored at the addresses, we need to apply the * operator to these addresses, and that's what the expressions * (*p1) (av, 3) and *p2 (av, 3) do.

With three functions to work with, it could be handy to have an array of function pointers. Then one can use a for loop to call each function, via its pointer, in turn. What would that look like? Clearly, it should look something like the declaration of a single pointer, but there should be a [3] somewhere to indicate an array of three pointers. The question is where. And here's the answer (including initialization):

```
const double * (*pa[3])(const double *, int) = {f1, f2, f3};
```

Why put the [3] there? Well, pa is an array of three things, and the starting point for declaring an array of three things is this: pa[3]. The rest of the declaration is about what kind of thing is to be placed in the array. Operator precedence ranks [] higher than *, so *pa[3] says pa is an array of three pointers. The rest of the declaration indicates what each pointer points to: a function with a signature of const double *, int and a return

type of const double *. Hence, pa is an array of three pointers, each of which is a pointer to a function that takes a const double * and int as arguments and returns a const double *.

Can we use auto here? No. Automatic type deduction works with a single initializer value, not an initialization list. But now that we have the array pa, it is simple to declare a pointer of the matching type:

```
auto pb = pa;
```

The name of an array, as you'll recall, is a pointer to its first element, so both pa and pb are pointers to a pointer to a function.

How can we use them to call a function? Both pa[i] and pb[i] represent pointers in the array, so you can use either of the function call notations with either of them:

const double * px = pa[0](av,3); const double * py = (*pb[1])(av,3);

And you can apply the * operator to get the pointed-to double value:

double x = *pa[0](av,3); double y = *(*pb[1])(av,3);

Something else you can do (and who wouldn't want to?) is create a pointer to the whole array. Because the array name pa already is a pointer to a function pointer, a pointer to the array would be a pointer to a pointer to a pointer. This sounds intimidating, but because the result can be initialed with a single value, you can use auto:

```
auto pc = &pa; // C++11 automatic type deduction
```

What if you prefer to do it yourself? Clearly, the declaration should resemble the declaration for pa, but because there is one more level of indirection, we'll need one more * stuck somewhere. In particular, if we call the new pointer pd, we need to indicate that it is pointer, not an array name. This suggests the heart of the declaration should be (*pd) [3]. The parentheses bind the pd identifier to the *:

```
*pd[3] // an array of 3 pointers
(*pd)[3] // a pointer to an array of 3 elements
```

In other words, pd is a pointer, and it points to an array of three things. What those things are is described by the rest of the original declaration of pa. This approach yields the following:

```
const double *(*(*pd)[3])(const double *, int) = &pa;
```

To call a function, realize that if pd points to an array, then *pd is the array and (*pd) [i] is an array element, which is a pointer to a function. The simpler notation, then, for the function call is (*pd) [i] (av, 3), and * (*pd) [i] (av, 3) would be the value that the returned pointer points to. Alternatively, you could use second syntax for invoking a function with a pointer and use (* (*pd) [i]) (av, 3) for the call and * (* (*pd) [i]) (av, 3) for the pointed-to double value. Be aware of the difference between pa, which as an array name is an address, and &pa. As you've seen before, in most contexts pa is the address of the first element of the array—that is, &pa [0]. Therefore, it is the address of a single pointer. But &pa is the address of the entire array (that is, of a block of three pointers). Numerically, pa and &pa may have the same value, but they are of different types. One practical difference is that pa+1 is the address of the next element in the array, whereas &pa+1 is the address of the next block of 12 bytes (assuming addresses are 4 bytes) following the pa array. Another difference is that you dereference pa once to get the value of the first element and you deference &pa twice to get the same value:

**&pa == *pa == pa[0]

Listing 7.19 puts this discussion to use. For illustrative purposes, the functions f1(), and so on, have been kept embarrassingly simple. The program shows, as comments, the C++98 alternatives to using auto.

Listing 7.19 arfupt.cpp

```
// arfupt.cpp -- an array of function pointers
#include <iostream>
// various notations, same signatures
const double * f1(const double ar[], int n);
const double * f2(const double [], int);
const double * f3(const double *, int);
int main()
    using namespace std;
    double av[3] = \{1112.3, 1542.6, 2227.9\};
    // pointer to a function
    const double *(*p1)(const double *, int) = f1;
    auto p2 = f2; // C++11 automatic type deduction
    // pre-C++11 can use the following code instead
    // const double *(*p2)(const double *, int) = f2;
    cout << "Using pointers to functions:\n";</pre>
    cout << " Address Value\n";
    cout << (*pl) (av, 3) << ": " << *(*pl) (av, 3) << endl;
    cout << p2(av,3) << ": " << *p2(av,3) << endl;
    // pa an array of pointers
    // auto doesn't work with list initialization
    const double *(*pa[3]) (const double *, int) = {f1, f2, f3};
    // but it does work for initializing to a single value
    // pb a pointer to first element of pa
    auto pb = pa;
    // pre-C++11 can use the following code instead
```

```
// const double *(**pb)(const double *, int) = pa;
    cout << "\nUsing an array of pointers to functions:\n";</pre>
    cout << " Address Value\n";
    for (int i = 0; i < 3; i++)
        cout << pa[i] (av,3) << ": " << *pa[i] (av,3) << endl;</pre>
    cout << "\nUsing a pointer to a pointer to a function:\n";
    cout << " Address Value\n";</pre>
    for (int i = 0; i < 3; i++)
        cout << pb[i] (av,3) << ": " << *pb[i] (av,3) << endl;
    // what about a pointer to an array of function pointers
    cout << "\nUsing pointers to an array of pointers:\n";
    cout << " Address Value\n";
    // easy way to declare pc
    auto pc = &pa;
    // pre-C++11 can use the following code instead
    // const double *(*(*pc)[3])(const double *, int) = &pa;
    cout << (*pc)[0](av,3) << ": " << *(*pc)[0](av,3) << endl;
    // hard way to declare pd
    const double *(*(*pd)[3])(const double *, int) = &pa;
    // store return value in pdb
    const double * pdb = (*pd) [1] (av, 3);
    cout << pdb << ": " << *pdb << endl;
    // alternative notation
    cout << (*(*pd)[2])(av,3) << ": " << *(*(*pd)[2])(av,3) << endl;
    // cin.get();
    return 0;
// some rather dull functions
const double * f1(const double * ar, int n)
   return ar;
const double * f2(const double ar[], int n)
   return ar+1;
const double * f3(const double ar[], int n)
   return ar+2;
```

}

And here is the output:

```
Using pointers to functions:
Address Value
002AF9E0: 1112.3
002AF9E8: 1542.6
Using an array of pointers to functions:
Address Value
002AF9E0: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9
Using a pointer to a pointer to a function:
Address Value
002AF9E0: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9
Using pointers to an array of pointers:
Address Value
002AF9E0: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9
```

The addresses shown are the locations of the double values in the av array.

This example may seem esoteric, but pointers to arrays of pointers to functions are not unheard of. Indeed, the usual implementation of virtual class methods (see Chapter 13, "Class Inheritance") uses this technique. Fortunately, the compiler handles the details.

Appreciating auto

One of the goals of C++11 is to make C++ easier to use, letting the programmer concentrate more on design and less on details. Listing 7.19 surely illustrates this point:

```
auto pc = &pa; // C++11 automatic type deduction
const double *(*(*pd)[3])(const double *, int) = &pa; // C++98, do it yourself
```

The automatic type deduction feature reflects a philosophical shift in the role of the compiler. In C++98, the compiler uses its knowledge to tell you when you are wrong. In C++11, at least with this feature, it uses its knowledge to help you get the right declaration.

There is a potential drawback. Automatic type deduction ensures that the type of the variable matches the type of the initializer, but it still is possible that you might provide the wrong type of initializer:

```
auto pc = *pa; // oops! used *pa instead of &pa
```

This declaration would make pc match the type of pa, and that would result in a compiletime error when Listing 7.19 later uses pc, assuming that it is of the same type as pa.

Simplifying with typedef

C++ does provide tools other than auto for simplifying declarations. You may recall from Chapter 5, "Loops and Relational Expressions," that the typedef keyword allows you to create a type alias:

typedef double real; // makes real another name for double

The technique is to declare the alias as if it were an identifier and to insert the keyword typedef at the beginning. So you can do this to make p_fun an alias for the function pointer type used in Listing 7.19:

```
typedef const double *(*p_fun)(const double *, int); // p_fun now a type name p_fun p1 = f1; // p1 points to the f1() function
```

You then can use this type to build elaborations:

```
p_fun pa[3] = {f1,f2,f3}; // pa an array of 3 function pointers
p_fun (*pd)[3] = &pa; // pd points to an array of 3 function pointers
```

Not only does typedef save you some typing, it makes writing the code less error prone, and it makes the program easier to understand.

Summary

Functions are the C++ programming modules. To use a function, you need to provide a definition and a prototype, and you have to use a function call. The function definition is the code that implements what the function does. The function prototype describes the function interface: how many and what kinds of values to pass to the function and what sort of return type, if any, to get from it. The function call causes the program to pass the function arguments to the function and to transfer program execution to the function code.

By default, C++ functions pass arguments by value. This means that the formal parameters in the function definition are new variables that are initialized to the values provided by the function call. Thus, C++ functions protect the integrity of the original data by working with copies.

C++ treats an array name argument as the address of the first element of the array. Technically, this is still passing by value because the pointer is a copy of the original address, but the function uses the pointer to access the contents of the original array. When you declare formal parameters for a function (and only then), the following two declarations are equivalent:

typeName arr[];
typeName * arr;

Both of these mean that arr is a pointer to *typeName*. When you write the function code, however, you can use arr as if it were an array name in order to access elements: arr[i]. Even when passing pointers, you can preserve the integrity of the original data by declaring the formal argument to be a pointer to a const type. Because passing the