CS320: Review Problems for second midterm, Fall 2024

Problem 1 Let *L* be the set of all strings over alphabet $\{a, b, c\}$ whose first letter occurs at least once again in the string.

Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Problem 2 Write a regular expression that represents the set of all strings over alphabet $\{a, b, c\}$ that contain the substring *ac* and the substring *bc*. If such a regular expression does not exist, prove it.

Problem 3 Let L be the set of strings over alphabet $\{a, b, c\}$ with at most three a's.

(a) Write a regular expression that defines L. If such regular expression does not exist, prove it.

(b) Is \overline{L} (the complement of L) context-free? Explain your answer briefly.

Problem 4 Let L be the set of strings over alphabet $\{a, b, c\}$ that have even length and contain exactly one c. (a) Write a regular expression that defines L. If such regular expression does not exist, prove it.

(b) Write a regular expression that defines \overline{L} (the complement of L). If such regular expression does not exist, prove it.

Problem 5 Let L_1 be the language defined over alphabet $\Sigma = \{a, b\}$ by the regular expression:

 $(a \cup bb)^*$

Let L_2 be the language generated by the context-free grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b\}, V = \{S\}$, and the production set P is:

$$S \to aSbb \mid \lambda$$

- 1. Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such grammar does not exist, explain why.
- 2. Write a complete formal definition of a context-free grammar G_2 that generates language L_2L_2 . If such grammar does not exist, explain why.
- 3. List six different strings that belong to $L_1 L_2$. If this is impossible, explain why.
- 4. List six different strings that belong to $L_2 L_1$. If this is impossible, explain why.
- 5. List six different strings that belong to $L_2L_2 L_2$. If this is impossible, explain why.

Problem 6 Let *L* be the language generated by the context-free grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c\}, V = \{S, A, B\}$, and *P* is:

$$\begin{array}{l} S \rightarrow AB \mid BA \\ A \rightarrow ab \\ B \rightarrow BB \mid \lambda \mid a \mid b \mid c \end{array}$$

(a) Write a regular expression that defines L. If such regular expression does not exist, prove it.

(b) Is \overline{L} (the complement of L) context-free? Explain your answer.

Problem 7 (a) Let *L* be the language generated by the context-free grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c\}, V = \{S, B, D, E\}$, and *P* is:

$$\begin{split} S &\to SS \mid \lambda \mid B \\ B &\to cD \mid bbD \mid aE \mid b \\ D &\to aD \mid cD \mid \lambda \\ E &\to EE \mid \lambda \mid b \end{split}$$

Write a regular expression that defines L. If such a regular expression does not exist, prove it.

(b) Let \mathcal{R} be the class of languages that can be represented by a regular expression, and let \mathcal{C} be the class of languages that can be represented by a context-free grammar. State the cardinalities of \mathcal{R} and \mathcal{C} , and compare them.

Problem 8 (a) Let L be the set of all strings over alphabet $\{a, b\}$ that have the same symbol in the first and last positions.

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Let L_1 be the set of all strings of odd length over alphabet $\{a, b\}$ that have the same symbol in the first, last, and middle positions.

Write a complete formal definition of a context-free grammar that generates L_1 . If such grammar does not exist, prove it.

(c) Let L_2 be the set of all strings of odd length over alphabet $\{a, b\}$ that have the same symbol in the first and middle positions.

Write a complete formal definition of a context-free grammar that generates L_2 . If such grammar does not exist, prove it.

Problem 9 Let L be the set of strings over alphabet $\{a, b, c\}$ in which no two adjacent symbols are equal.

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Write a complete formal definition of a context-free grammar that generates \overline{L} (the complement of L). If such grammar does not exist, prove it.

Problem 10 (a) Let:

$$L = \{a^{i}b^{j}c^{k}d^{m} \mid i = j \text{ and } j = 2k, \ i, j, k, m \ge 0\}$$

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Is every countable language context-free? Explain your answer briefly.

Problem 11 (a) Let L_1 be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$L_1 = \{a^{2n}d^{\ell}b^m c^k d^{2m+1}e^{n+3} \mid k, n, m, \ell \ge 0\}$$

Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such grammar does not exist, explain why.

(b) Let L_2 be a language over alphabet $\{a, b, c, d, e\}$, consisting of those strings that have an even number of e's. Write a complete formal definition of a context-free grammar G_2 that generates language L_2 . If such grammar does not exist, explain why.

Problem 12 Let:

$$L = \{a^{i}b^{k}c^{2i+1}d^{k+2}h^{2i} \mid i,k \ge 0\}$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Is L uncountable? Explain your answer briefly.

Problem 13 Let:

$$L = \{ a^{\ell} b^{j} c^{k} d^{m} \mid m = 2k \text{ and } k = 2\ell, \ \ell, j, k, m \ge 0 \}$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Write a regular expression that defines L. If such regular expression does not exist, prove it.

Problem 14 Let *L* be the set of all strings over alphabet $\{a, b, c\}$ whose length is even and two middle symbols are equal.

(a) Write a complete formal definition of a context-free grammar that generates L. If such a grammar does not exist, prove it.

(b) Draw a state-transition graph of a finite automaton M that accepts L. If such an automaton does not exist, prove it.

Problem 15 Let *L* be the set of all strings over $\{a, b\}$ with twice as many *a*'s as *b*'s. Write a complete formal definition or a state-transition graph of a finite automaton *M* that accepts *L*. If such automaton does not exist, prove it.

Problem 16 Let *L* be the set of all strings over alphabet $\{a, b, c\}$ in which at least one of the letters appears at least twice.

(a) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, explain why.

(b) Construct a state transition graph of a finite automaton that accepts L. If such an automaton does not exist, explain why.

Problem 17 Let:

 $\Sigma = \{a, b, c\}$

and let L be the set of all strings over Σ ending with the substring *bacb*.

(a) Construct a state-transition graph of a finite automaton M that accepts L. If such automaton does not exist, prove it.

(b) Construct a state-transition graph of a <u>deterministic</u> finite automaton M' that accepts L. If such automaton does not exist, prove it.

Problem 18 (a) Let:

$$\Sigma = \{a, b, c\}$$

and let L_1 be the set of all strings over Σ in which every a is either immediately preceded or immediately followed by b.

Construct a state-transition graph of a finite automaton M_1 that accepts L_1 . If such automaton does not exist, prove it.

(b) Let:

$$\Sigma = \{a, b, c\}$$

and let L_2 be the set of all strings over Σ with an even number of a's or an odd number of b's.

Write a regular expression that defines L_2 . If such expression does not exist, prove it.

Problem 19 Let *L* be the language accepted by the finite automaton $M = (Q, \Sigma, \delta, q, \{f\})$, where $\Sigma = \{a\}$, $Q = \{p, q, r, s, t, v, w, x, y, z, f\}$,

and δ is given by the following table:

	a	λ
p	$\{z\}$	Ø
q	$\{t,r\}$	$\{s\}$
r	Ø	$\{q,t\}$
s	Ø	$\{w\}$
t	$\{z, y\}$	$\{p,w\}$
v	$\{x\}$	$\{r\}$
w	$\{y\}$	Ø
x	$\{p\}$	$\{v\}$
y	$\{p\}$	$\{f\}$
z	Ø	$\{v\}$
f	Ø	Ø

Compute the λ -closure of state v.

Problem 20 Let M be the finite automaton represented by the state diagram

and let L be the language accepted by M.

Write a complete formal definition or a state-transition graph of a deterministic finite automaton M' that accepts L and show your work. If such automaton does not exist, prove it.

Problem 21 Let M be the finite automaton represented by the state diagram

and let L be the language accepted by M. (In this diagram ϵ is used where we write λ .)

(a) Is the finite automaton M deterministic? Justify briefly your answer.

(b) If M is not deterministic, construct a deterministic finite automaton M' that accepts L and show your work. If such an automaton M' does not exist, explain why.

Problem 22 Let M be the finite automaton represented by the state diagram

and let L be the language accepted by M.

Construct a deterministic finite automaton M' that accepts L and show your work. If such M' does not exist, explain why.

Problem 23 Let *M* be the finite automaton represented by the state diagram:

and let L be the language accepted by M.

Construct a regular expression that defines L and show your work. If such regular expression does not exist, prove it.

Problem 24 Write a complete formal definition of a Turing machine:

 $M = (Q, \Sigma, \Gamma, \delta, q_0, accept, reject)$

over input alphabet $\{0, 1\}$, such that M halts on every input, after making exactly 5 moves. If such machine does not exist, explain why.

Problem 25 Consider the Turing machine:

$$M = (Q, \Sigma, \Gamma, \delta, p, accept, reject)$$

such that: $Q = \{p, q, s, accept, reject\}; \Sigma = \{a, b, c\};$ $\Gamma = \{B, X, Y, Z, a, b, c\}.$

and δ is defined by the following transition set:

 $\begin{array}{l} [p, a, q, X, R] \\ [p, b, q, Y, R] \\ [p, b, q, Y, R] \\ [p, B, reject, B, R] \\ [q, a, q, X, R] \\ [q, b, q, Y, R] \\ [q, c, q, Z, R] \\ [q, B, s, B, L] \\ \\ [s, X, accept, B, R] \\ [s, Y, s, B, R] \\ [s, Z, reject, B, R] \\ [s, B, s, B, R] \end{array}$

(where B is the designated blank symbol.)

Let L_1 be the set of strings *accepted* by M, let L_2 be the set of strings *rejected* by M, let L_3 be the set of strings on which M diverges.

(a) Draw a state transition diagram for M.

(b) What task is performed while M operates in states p and q?

(c) Write a regular expression that defines L_1 . If such a regular expression does not exist, prove it.

(d) Write a regular expression that defines L_2 . If such a regular expression does not exist, prove it.

(e) Write a regular expression that defines L_3 . If such a regular expression does not exist, prove it.

(f) Which (if any) of the languages: L_1 , L_2 and L_3 are decidable? Explain your answer.

Problem 26 Consider a Turing machine:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, accept, reject)$$

such that:

$$Q = \{q_0, accept, reject\}$$
$$\Sigma = \{a, b, c\}$$
$$\Gamma = \{a, b, c, B\}$$

and δ is defined by the following transition set:

$$\begin{array}{l} [q_0, a, q_0, a, R] \\ [q_0, b, q_0, b, R] \\ [q_0, c, accept, c, R] \\ [q_0, B, q_0, B, R] \end{array}$$

(where B is the designated blank symbol.)

(a) Write a complete formal definition of a Turing machine M_1 such that M_1 accepts η if M halts on η , and M_1 rejects η if M does not halt on η , for all $\eta \in \Sigma^*$. In short:

$$(M(\eta) \searrow) \rightarrow (M_1(\eta) \searrow \text{ and accepts })$$

and also:

$$(M(\eta) \nearrow) \rightarrow (M_1(\eta) \searrow \text{ and rejects })$$

If such Turing machine M_1 does not exist, prove it.

(b) Is the language accepted by M decidable? Explain your answer.

(c) Is the language accepted by M Turing recognizable? Explain your answer.

Problem 27 Consider the Turing machine:

 $M = (Q, \Sigma, \Gamma, \delta, q, accept, reject)$

such that:

 $Q = \{q, r, s, accept, reject\};$ $\Sigma = \{a, b\};$ $\Gamma = \{B, a, b, X\};$

and δ is defined by the following transition set:

$$\begin{array}{l} [q, a, q, a, R] \\ [q, b, q, X, R] \\ [q, B, r, B, L] \\ [q, X, reject, B, L] \\ [r, a, r, a, L] \\ [r, b, reject, b, L] \\ [r, B, reject, B, L] \\ [r, X, s, X, L] \\ \end{array}$$

$$\begin{array}{l} [s, a, s, a, L] \\ [s, b, reject, b, L] \\ [s, B, reject, B, L] \\ [s, X, accept, X, R] \end{array}$$

(where B is the designated blank symbol.)

 ${\cal M}$ accepts by final state.

Note that: This Turing machine terminates abnormally if it is instructed to move to the left of the left end of its tape.

(a) Write a regular expression that defines the set of strings on which M diverges. If such regular expression does not exist, prove it.

(b) Write a regular expression that defines the set of strings on which M halts and accepts. If such regular expression does not exist, prove it.

(c) Write a regular expression that defines the set of strings on which M halts and rejects. If such regular expression does not exist, prove it.

(d) Write a regular expression that defines the set of strings on which M terminates abnormally (attempts to move the head to the left of the leftmost cell.) If such regular expression does not exist, prove it.

Problem 28 Let *L* be the language of strings over alphabet $\{a, b\}$ that contain at least three occurrences of letter *a*.

(a) Write a regular expression that defines L. If such regular expression does not exist, prove it.

(b) Describe a Turing machine M that decides the following problem:

INPUT: A representation of a Turing machine M. QUESTION: Is L(M) = L?

If such Turing machine does not exist, prove it.

Problem 29 Let $\Sigma = \{a, b\}$. Construct a Turing recognizable language L over Σ that is not decidable, such that its complement \overline{L} is Turing recognizable but not decidable. Explain your answer. If such a language does not exist, prove it.

Problem 30 Let L_1 be a Turing recognizable language which is not decidable; and let L_2 be a decidable language. (a) Is $L_1 - L_2$ a decidable language?

If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing that such a Turing machine does not exist.

(b) Is $L_1 - L_2$ a Turing recognizable language?

If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing that such a Turing machine does not exist.

(c) Is $L_2 - L_1$ a decidable language? If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing that such a Turing machine does not exist.

(d) Is $L_2 - L_1$ a Turing recognizable language?

If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing that such a Turing machine does not exist.

Problem 31 Let L_1 be a Turing recognizable language, and let L_2 be a decidable language. Describe a Turing machine M that accepts $L_1 - L_2$. If such M does not exist, explain why.