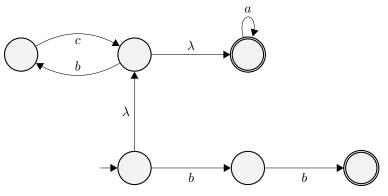

09.15am - 10.30am, Wednesday, October 30, 2024

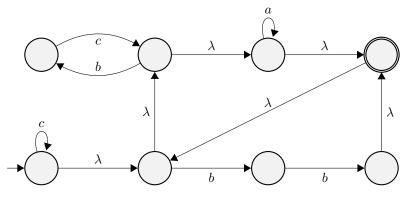
Problem 1 (a) Let L_1 be the set of all strings over alphabet $\{a, b\}$ that contain exactly three copies of a. Write a regular expression that defines L_1 . **Answer:** $b^*ab^*ab^*ab^*$ (b) Let L_2 be the set of all strings over alphabet $\{a, b\}$ that contain at least three copies of a. Write a regular expression that defines L_2 . **Answer:** $b^*ab^*ab^*a(a \cup b)^*$ (c) Let L_3 be the set of all strings over alphabet $\{a, b\}$ that contain at most three copies of a. Write a regular expression that defines L_3 . **Answer:** $b^*(a \cup \lambda)b^*(a \cup \lambda)b^*(a \cup \lambda)b^*$

Problem 2 Let L_1 be the set of all strings over alphabet $\{a, b\}$ that have length at least 3 and whose first three letters are equal. Let L_2 be the set of strings over alphabet $\{a, b\}$ that contain at most one a. (a) Draw a state-transition graph of a finite automaton that accepts $L_1 \cup L_2$.

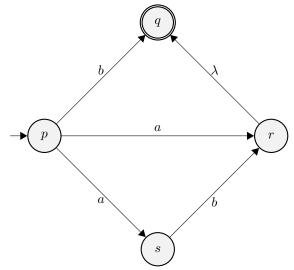
Answer:


(b) Give a regular expressions that defines L₁ ∩ L₂. Answer: bbbb*(a ∪ λ)b*
(c) Write a complete definition of a context-free grammar that generates L₁L₂. Answer: The states of a grammar are S, L₁, L₂. Its rules are:

- $S \to L_1 L_2$
- $L_1 \rightarrow aaa|bbb|L_1a|L_1b$
- $L_2 \rightarrow a |\lambda| b L_2 |L_2 b$

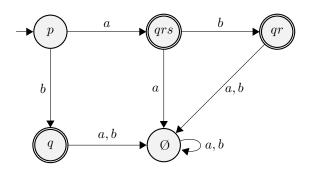

Problem 3 Let *L* be the language defined by the regular expression:

 $(bc)^*a^*\cup bb$

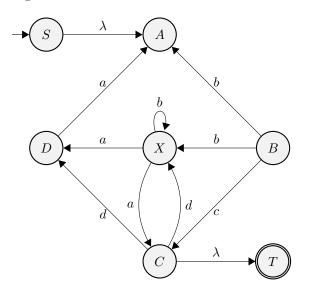

(a) Construct a state-transition graph of a finite automaton that accepts L. Answer:

(b) Construct a state-transition graph of a finite automaton that accepts c^*L^* . Answer:

Problem 4 Let L be the language accepted by the NFA M with the following state transition graph.

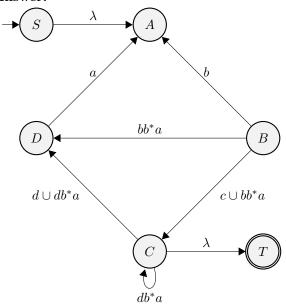


(a) What are the λ -closures of the state s and the set $\{p, r\}$? Answer: $\{s\}$ and $\{p, q, r\}$


(b) Suppose that M is either in state p or state s. Write the set of all possible states that M could reach after it has processed only the character a from an input string. **Answer:** $\{q, r, s\}$

(c) Draw a state-transition graph of a deterministic finite automaton that accepts L. The states of your automaton must be labelled in a meaningful way by sets of states of M.

Answer:


Problem 5 Consider the following finite automaton.

(a) Which edge labels would need to be changed when we replace M by an equivalent regular expression machine that is obtained by eliminating the node X. Answer: BD, BC, CD, CC.

(b) What would be the new label on the edge *BC*? Answer: $c \cup bb^*a$

(c) Draw a diagram of the regular expression machine obtained from this automaton when the node X is eliminated using one step of the algorithm for conversion of a finite automaton to a regular expression. (Only show how to remove the node X. Do not complete the algorithm to obtain a regular expression that corresponds to the automaton.) **Answer:**

