Problem 1 Write the best title lines for the functions that are called by the following main program. Do not supply the blocks for the functions.

```cpp
int main() {
    int x = 12, y = 36, w = 21331;
    double z[4] = {1.1, -1.11, 2.5, 5.7};

    // a. The function ratio returns x/y rounded to 2 decimal places eg as 0.33.
    cout << ratio(x, y) << endl; // (a)

    // b. The function sameSign reports whether two numbers have the same sign. Here it returns false.
    if ( !sameSign(z[0], z[1]) ) cout << "Opposite signs\n"; // (b)

    // c. The function cutDuplicates removes all duplicate digits from a number.
    cutDuplicates( w ); // (c)
    cout << w << endl; // prints 2

    // d. The function inWords makes the word for a number (here twelve) from an integer parameter.
    cout << inWords(x) << endl; // (d)

    // e. A mystery function.
    mystery(mystery(sameSign(z[0], ratio(x,y)))); // (e)

    return 0;
}
```

(a) Title line for **ratio** as called at the line marked (a).
Answer: `double ratio(int x, int y)`

(b) Title line for **sameSign** as called at the line marked (b).
Answer: `bool sameSign(double x, double y)`

(c) Title line for **cutDuplicates** as called at the line marked (c).
Answer: `void cutDuplicates(int &x)`

(d) Title line for **inWords** as called at the line marked (d).
Answer: `string inWords(int x)`

(e) Title line for **mystery** as called at the line marked (e).
Answer: `bool mystery(bool b)`
Problem 2 Consider the following C++ program. The program makes use of a function `reverseArray` that reverses the entries in an array. So that if the array has capacity 5 and entries 1, 2, 3, 4, 5 in this order, the function `reverseArray` moves the entries so that they are ordered as 5, 4, 3, 2, 1.

Make sure to use your own 8-digit CUNY ID number as the number entered as input to the program. It would be a very bad idea to give answers based on another student’s ID number!

int main() {
 int id, a[10] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3};

 cout << "Enter your 8-digit CUNY id number: ";
 cin >> id; // assume that the user types YOUR OWN CUNY ID number

 cout << id << endl; // line (a)
 cout << a[id % 10] << endl; // line (b)

 reverseArray(a, 10);
 cout << a[a[0]] << endl; // line (c)
 cout << a[4] % a[5] << endl; // line (d)
 cout << a[0] + a[2] % a[3] << endl; // line (e)

 return 0;
}

Enter your 8-digit CUNY id number: (a) What is the output from the instruction beginning on line (a)?
Answer:
12345678
This answer is based on the ID number 12345678. Actual answers will be different.

(b) What is the output from the instruction beginning on line (b)?
Answer:
5
The answer will be the array entry indexed by the last digit of the answer to (a).

(c) What is the output from the instruction beginning on line (c)?
Answer:
2

(d) What is the output from the instruction beginning on line (d)?
Answer:
4

(e) What is the output from the instruction beginning on line (e)?
Answer:
3
Problem 3 Write a function called sumAbsolute that returns the sum of the absolute values of the entries in an array with base type double. (The absolute value $|x|$ of a number is obtained by ignoring its sign, so for example $|-4| = |4| = 4$.) The function should use 2 parameters as follows: the array name, the capacity.

Excessively long solutions that use more than 10 lines of code may lose points. A program that uses the function sumAbsolute follows.

```cpp
int main() {
    double x[4] = { -1, -2, 3, 0};
    cout << sumAbsolute(x, 4) << endl; // prints 6 (this is found as 1 + 2 + 3 + 0).
    return 0;
}
```

Answer:

```cpp
double sumAbsolute(double a[], int cap) {
    double answer = 0.0;
    for (int c = 0; c < cap; c++) {
        if (a[c] < 0) answer -= a[c];
        else answer += a[c];
    }
    return answer;
}
```
Problem 4 The recursive function \texttt{changeDigits} has 3 parameters \(x, a, b \). The parameter \(x \) is a positive integer and the other parameters are single digit integers. The function considers the digits of \(x \) and returns a result obtained by changing any copy of \(a \) to become \(b \). For example \texttt{changeDigits(1331, 1, 9)} returns 9339 and \texttt{changeDigits(1331, 1, 0)} returns 330.

An implementation of this function with parts of the code covered up is given below. There is also a main program that uses it.

Some pieces of code have been replaced by \texttt{PART (a)}, \texttt{PART (b)}, and so on. To answer the parts of this question you should supply the C++ code that was replaced. Each answer must fit on a single line.

```cpp
int changeDigits(PART (a)) {
    if ( PART (b) ) return b;
    if ( PART (c) ) return x;
    int y = PART (d);
    int z = changeDigits(PART (e));
    return PART (f);
}

int main() {
    cout << changeDigits(1331, 1, 2) << endl; // prints 2332
    cout << changeDigits(1331, 1, 0) << endl; // prints 330
    cout << changeDigits(1331, 2, 5) << endl; // prints 1331
    return 0;
}
```

(a) Give a replacement for \texttt{PART (a)} to declare the parameters \(x, a, b \):

\texttt{Answer: PART (a) is int x, int a, int b}

(b) Give a replacement for \texttt{PART (b)} as a base case of recursion:

\texttt{Answer: PART (b) is x == a}

(c) Give a replacement for \texttt{PART (c)} as a second base case of recursion:

\texttt{Answer: PART (c) is x < 10}

(d) Give a replacement for \texttt{PART (d)} to change digits in \(x / 10 \):

\texttt{Answer: PART (d) is changeDigits(x / 10, a, b)}

(e) Give a replacement for \texttt{PART (e)} to change the last digit, if necessary:

\texttt{Answer: PART (e) is x % 10, a, b}

(f) Give a replacement for \texttt{PART (f)} to return the answer:

\texttt{Answer: PART (f) is 10 * y + z}
Problem 1 Write the best title lines for the functions that are called by the following main program. Do not supply the blocks for the functions.

```c++
int main() {
    int x = 12, y = 36;
    double z[4] = {1.1, -1.11, 2.5, 5.7};
    string s = "twelve", q = "Queens";

    // a. The function sameSign reports whether two numbers have the same sign. Here it returns false.
    if ( !sameSign(z[0], z[1]) ) cout << "Opposite signs\n"; // (a)

    // b. The function cutDuplicates removes all duplicate letters from a word.
    cutDuplicates( q ); // (b) cout << q << endl; // prints Quns after cutting the duplicated e

    // c. The function ratio returns x/y rounded to 3 decimal places eg as 0.333.
    cout << ratio(x, y) << endl; // (c)

    // d. The function translate returns the integer corresponding to the name of a number. Here 12.
    cout << translate(s) << endl; // (d)

    // e. A mystery function.
    mystery(mystery(sameSign(z[0], ratio(x, y)))); // (e)

    return 0;
}
```

(a) Title line for **sameSign** as called at the line marked (a).
Answer: `bool sameSign(double x, double y)`

(b) Title line for **cutDuplicates** as called at the line marked (b).
Answer: `void cutDuplicates(string &x)`

(c) Title line for **ratio** as called at the line marked (c).
Answer: `double ratio(int x, int y)`

(d) Title line for **translate** as called at the line marked (d).
Answer: `int translate(string s)`

(e) Title line for **mystery** as called at the line marked (e).
Answer: `bool mystery(bool b)`
Problem 2 Consider the following C++ program. The program makes use of a function \texttt{permuteArray} that moves the first entry in an array to the end. So that if the array has capacity 5 and entries 1, 2, 3, 4, 5 in this order, the function \texttt{permuteArray} moves the entries so that they are ordered as 2, 3, 4, 5, 1.

Make sure to use your own 8-digit CUNY ID number as the number entered as input to the program. It would be a very bad idea to give answers based on another student’s ID number!

```cpp
int main() {
    int id, a[10] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3};
    cout << "Enter your 8-digit CUNY id number: ";
    cin >> id;  // assume that the user types YOUR OWN CUNY ID number
    cout << id << endl;  // line (a)
    cout << a[id % 10] << endl;  // line (b)
    permuteArray(a, 10);
    cout << a[a[0]] << endl;  // line (c)
    cout << a[4] % a[5] << endl;  // line (d)
    cout << a[0] + a[2] % a[3] << endl;  // line (e)
    return 0;
}
```

Enter your 8-digit CUNY id number: (a) What is the output from the instruction beginning on line (a)?

\textbf{Answer:}

12345678

This answer is based on the ID number 12345678. Actual answers will be different.

(b) What is the output from the instruction beginning on line (b)?

\textbf{Answer:}

5

The answer will be the array entry indexed by the last digit of the answer to (a).

(c) What is the output from the instruction beginning on line (c)?

\textbf{Answer:}

4

(d) What is the output from the instruction beginning on line (d)?

\textbf{Answer:}

1

(e) What is the output from the instruction beginning on line (e)?

\textbf{Answer:}

2
Problem 3 Write a function called `numberNegative` that returns the number of negative entries in a 2-dimensional array of integers with 3 columns. The function should use 3 parameters as follows: the array name, the number of rows, the number of columns.

Excessively long solutions that use more than 10 lines of code may lose points. A program that uses the function `numberNegative` follows.

```cpp
int main() {
    int x[4][3] = {{0,-1,2}, {-3,4,-5}, {6,-7,8}, {9,10,11}};
    cout << numberNegative(x, 4, 3) << endl; // prints 4 (because it counts -1,-3,-5,-7)
    return 0;
}
```

Answer:

```cpp
int numberNegative(int a[][3], int rows, int cols) {
    int answer = 0;
    for (int r = 0; r < rows; r++)
        for (int c = 0; c < cols; c++)
            if (a[r][c] < 0) answer++;
    return answer;
}
```
Problem 4 The recursive function \texttt{swapDigits} has 3 parameters \texttt{x, a, b}. The parameter \texttt{x} is a positive integer and the other parameters are single digit integers. The function considers the digits of \texttt{x} and returns a result obtained by changing any copy of \texttt{a} to become \texttt{b} and any copy of \texttt{b} to become \texttt{a}. For example \texttt{swapDigits(13531, 1, 3)} returns 31513 and \texttt{swapDigits(1331, 1, 0)} returns 330.

An implementation of this function with parts of the code covered up is given below. There is also a main program that uses it.

Some pieces of code have been replaced by \texttt{PART (a)}, \texttt{PART (b)}, and so on. To answer the parts of this question you should supply the C++ code that was replaced. Each answer must fit on a single line.

```cpp
int swapDigits(PART (a)) {
    if ( x == a || x == b ) return a + b PART (b) x;
    if ( PART (c) ) return x;
    int y = PART (d);
    int z = swapDigits(PART (e));
    return PART (f);
}

int main() {
    cout << swapDigits(1331, 1, 3) << endl; // prints 3113
    cout << swapDigits(1331, 1, 0) << endl; // prints 330
    cout << swapDigits(1331, 2, 5) << endl; // prints 1331
    return 0;
}
```

(a) Give a replacement for \texttt{PART (a)} to declare the parameters \texttt{x, a, b}:

\textbf{Answer}: \texttt{PART (a) is int x, int a, int b}

(b) Give a replacement for \texttt{PART (b)} as an operation to calculate the answer in these base cases:

\textbf{Answer}: \texttt{PART (b) is -}

(c) Give a replacement for \texttt{PART (c)} as a second base case of recursion:

\textbf{Answer}: \texttt{PART (c) is x < 10}

(d) Give a replacement for \texttt{PART (d)} to change digits in \texttt{x / 10}:

\textbf{Answer}: \texttt{PART (d) is swapDigits(x / 10, a, b)}

(e) Give a replacement for \texttt{PART (e)} to change the last digit, if necessary:

\textbf{Answer}: \texttt{PART (e) is x % 10, a, b}

(f) Give a replacement for \texttt{PART (f)} to return the answer:

\textbf{Answer}: \texttt{PART (f) is 10 * y + z}