
QUEENS COLLEGE Department of Computer Science
CSCI 313 Practice problems on General Trees and Binary Trees

Instructor: Alex Ryba

These problems were given on exams for this course. Some older problems did not make use of generics in Java, but
generic implementations are now required in this course.

Problem 1 A new method miniRemove in a GeneralTree is applied to a node of the tree as follows. If the node
is a leaf, it is removed. Otherwise its data value is replaced by the data value of its first child and its firstChild is
recursively removed by the method miniRemove.

For example if the GeneralTree is as follows:

1

|

| | |

2 3 4

| |

----- |

| | |

5 6 7

|

8

then if miniRemove is applied to the root, the tree changes to:

2

|

| | |

5 3 4

| |

----- |

| |

6 7

|

8

Assume that GeneralTrees are implemented as in class, based on the following skeleton Java code for the classes
GNode and GeneralTree.

public class GNode<T> extends Node<T> {

// The inherited instance variables from class Node<T> are: parent and data

ArrayList<GNode<T>> children; // can be empty, but is never null

// standard methods and constructors omitted.

}

class GeneralTree<T> extends Tree<T> {

// The inherited instance variable from class Tree<T> is: Node<T> root

// standard methods and constructors omitted

// The new method has title:

public void miniRemove(GNode<T> n) {

// code omitted

}

}

Write a Java implementation for the method called miniRemove.

Hint: You might find it useful to call standard Tree methods such as isRoot, isLeaf and the standard GeneralTree
method remove. The GNode method get(i) that returns the ith child of a node is also useful here.

You may assume that the parameter is a node of the tree, in particular it is not null. ‘

Answer:

Problem 2 Consider the following Java program.

public class Problem2 {

public static void main(String args[]) {

BinaryTree<String> t = new BinaryTree<>();

initializeTree(t);

System.out.println(t.height()); // line (a)

for (Node<String> x:t.preOrder())

System.out.print(x.getData() + " "); System.out.println(); // line (b)

for (Node<String> x:t.postOrder())

System.out.print(x.getData() + " "); System.out.println(); // line (c)

for (Node<String> x:t.inOrder())

System.out.print(x.getData() + " "); System.out.println(); // line (d)

}

}

Assume that the class BinaryTree is a standard binarty tree as implemented in class and that the method initializeTree
sets the tree to store the following data:

A

|

| |

B C

|

|

D

|

| |

E F

(a) What is the output at line (a)?

(b) What is the output at line (b)?

(c) What is the output at line (c)?

(d) What is the output at line (d)?

Problem 3 A parityOrder traversal of a BinaryTree placess a node that has exactly one child after the subtree
headed by its child. Otherwise the subtree headed by the left child comes first, followed by the node itself, and finally
the subtree headed by the right.

Assume that class BinaryTree is implemented using the following skeleton Java code for BNode and BinaryTree.

public class BNode<T> {

BNode<T> parent, left, right;

T data;

// constructors, getters and setters and other standard method are available

// left and right are set to null in case corresponding children are absent

}

public class BinaryTree<T> {

BNode<T> root;

// standard BinaryTree methods are implemented

public ArrayList<BNode<T>> parityOrder() {

ArrayList<BNode<T>> answer = new ArrayList<BNode<T>>();

parityOrder(root, answer);

return answer;

}

}

Write a Java implementation for the auxiliary recursive method called parityOrder.

Answer:

