Sets and Maps

Set

Collection of unique element

You cannot access elements by index, rather you can check use the element itself to
check if it is in the set

Efficiently add or remove elements or check if an element is already in the set
https://docs.oracle.com/javase/7/docs/api/java/util/Set.html

Implemention: TreeSet
(https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html) or HashSet
(https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html)

Known as a dictionary or table, is a collection of <KEY, VALUE> pairs, known as Entries
A Map is a SET of Entries

Maps allows us to store elements by associating each value with a unique key, and can
quickly check if the key exist or not.

A Map allows you to efficiently add or remove a pair given its key, update the value
associated with a given key, or look up the value of a given key.
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html

Implementation: TreeMap
(https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html ) or
HashMap(https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html)

HashSet/HashTable

Array-based implementation of the map/set api
Keys
o The keys are the calculated based on the hash function
= f(value) = key
o Since the data structure is array based, the keys must be in the range of the
array [O, ..., n-1]
o Generally, we call each slots in the array buckets
Hash Function
o A good hash function is essential for this data structure in order to have good
performance.
o Must produce a random, uniformly distributed hash values
o The same input must always produce the same output
Collision
o The major flaw of a hashing is that some values might be hashed into the same
key, also known as collision
= The worst hash function will hash all values into the same key


https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

= The perfect hash function will hash all unique values into its own unique
key
= Since we don’t live in a perfect world, we must minimize the number of
collisions
o Two solutions when collisions occur: Chaining and Open Addressing

Hashing with Chaining:

Each bucket in the array is a List such a linked List
As the elements are hashed into a bucket, they are inserted into the linked list in that
bucket.
To retrieve data, hash the query to its location and then transverse the linked list that
located in that bucket.
o Huge problem: if it's a bad hash function and it hashes all elements to the same
bucket. If n items were inserted, then that linked-list at the bucket is of length n.
So data retrieval will be O(n).

Analysis:

If the hash function is random and uniformly distributed, then the probability it will hash
any given item to the first bucket is 1/b, where b is the number of buckets.

When all n items are inserted into the hash map, then the probability that element / is in
any of the bucket is n*1/b = n/b

Worse case: If all elements are hashed to the same bucket, then finding a single element
would require traversing a linked-list of size n, O(n)

Average case: If a few collisions occur, then the average size of the linked-list is n/b

Best Case: If no collisions ever occur and the array is sufficiently sized, such that b =n,
then any query would take constant time.

Dictionary Problem:

Given a set S ={xy, ..., Xxn} of n elements from a universe U. After storing this set, we
need to be able to answer the question: Is g, from the universe U, in set S?
Solutions:

o Hashing w/ Chaining

o Bloom Filters



