
Sets and Maps

Set

- Collection of unique element
- You cannot access elements by index, rather you can check use the element itself to

check if it is in the set
- Efficiently add or remove elements or check if an element is already in the set
- https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
- Implemention: TreeSet

(https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html) or HashSet
(https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html)

Maps

- Known as a dictionary or table, is a collection of <KEY, VALUE> pairs, known as Entries
- A Map is a SET of Entries
- Maps allows us to store elements by associating each value with a unique key, and can

quickly check if the key exist or not.
- A Map allows you to efficiently add or remove a pair given its key, update the value

associated with a given key, or look up the value of a given key.
- https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
- Implementation: TreeMap

(https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html) or
HashMap(https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html)

HashSet/HashTable

- Array-based implementation of the map/set api
- Keys

o The keys are the calculated based on the hash function
 f(value) = key

o Since the data structure is array based, the keys must be in the range of the
array [0, …, n-1]

o Generally, we call each slots in the array buckets
- Hash Function

o A good hash function is essential for this data structure in order to have good
performance.

o Must produce a random, uniformly distributed hash values
o The same input must always produce the same output

- Collision
o The major flaw of a hashing is that some values might be hashed into the same

key, also known as collision
 The worst hash function will hash all values into the same key

https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

 The perfect hash function will hash all unique values into its own unique
key

 Since we don’t live in a perfect world, we must minimize the number of
collisions

o Two solutions when collisions occur: Chaining and Open Addressing

Hashing with Chaining:

- Each bucket in the array is a List such a linked List
- As the elements are hashed into a bucket, they are inserted into the linked list in that

bucket.
- To retrieve data, hash the query to its location and then transverse the linked list that

located in that bucket.
o Huge problem: if it’s a bad hash function and it hashes all elements to the same

bucket. If n items were inserted, then that linked-list at the bucket is of length n.
So data retrieval will be O(n).

Analysis:

- If the hash function is random and uniformly distributed, then the probability it will hash
any given item to the first bucket is 1/b, where b is the number of buckets.

- When all n items are inserted into the hash map, then the probability that element I is in
any of the bucket is n*1/b = n/b

- Worse case: If all elements are hashed to the same bucket, then finding a single element
would require traversing a linked-list of size n, O(n)

- Average case: If a few collisions occur, then the average size of the linked-list is n/b
- Best Case: If no collisions ever occur and the array is sufficiently sized, such that b = n,

then any query would take constant time.

Dictionary Problem:

- Given a set S = { x1, …, xn} of n elements from a universe U. After storing this set, we
need to be able to answer the question: Is q, from the universe U, in set S?

- Solutions:
o Hashing w/ Chaining
o Bloom Filters

