Priority Queue

Priority Queue:
- A priority queue is an ADT with the following major methods:
- void add (T x);
- T removeMin();
- Similar to a regular Queue but now each element has a priority or a ranking such that the
one with the highest priority will be removed first.
- Itis important that the object being add have a compareTo method that specifies the
comparisons between two instances of that class.

Implementation:
- Unsorted Array:
- We can insert the elements into the queue one by one in no particular order.
- void add (T x) takes O(1) time
- But we must do extra work and make sure we remove each the element with the
highest priority.
- T removeMin() takes O(n) time
- Sorted Array:
- We can insert the elements in order of their priorities.
- void add (T x) takes O(n) time
- We do the extra work in add so we can save time in removing. Since the Queue
is already sorted, we can just remove normally.
- T removeMin() takes O(1) time
- Binary Heap:
- We can do some work in adding and some work in removing.
- The runtime of adding and removing take O(Ign)

Binary Heap:
- A Heap is a binary tree that has the following 2 properties:
- Heap Order: At any node the data is smaller than any data of its childrens
subtree.
- Heap Shape: All levels of the tree are completely full except the last level which
can be partially filled from left to right.
- A complete tree can be efficiently represented an array. This saves space
because we do not have to store pointers.
- Implementation:
- Using an array. Where the root is located at index 0
- Where are the children of node N?
- Located at index 2n+1 and 2n+2
- Parents of node N?
- (n-1)2

Lowest Highest
key

(15> 10) (15> 12)

ORONOBNONONONO

(3<8) (3<10) (6<18) (6<18) (10> &) (10>2) (12>1) (12>6)

Min Heap
(Parent key is less than or equal
to (<) the child key)

Max Heap
(Parent key is greater than or
equal to () the child key)

Source: https://www.techiedelight.com/introduction-priority-queues-using-binary-heaps/

- Insertion (Min Heap):
- Place the new element one spot after the last element (the new element
becomes the rightmost element of the bottom level).
- While this element is smaller than its parent:
- Move this element upward by swapping it with its parent.
- Known as Bubble Up
- This process takes O(Ign)

Add the new element 2 to the bottom level of the
heap and call

Heapify-up(2)

Push(2) called on min heap

Swap node 2 with its parent as heap Swap node 2 with its parent as heap i
property is violated property is still violated Resultant Min Heap

swap(5, 2) swap(3, 2)

https://www.techiedelight.com/introduction-priority-queues-using-binary-heaps/

- Remove (Min Heap)
- Move the last element (the rightmost element of the bottom level) to the root of
the heap (replacing the previous root).
- While this element is larger than one or both children:

- Move this element downward by swapping it with its smaller child.
- Known as Bubble Down

- This process takes O(Ign)

. Replace the root of the heap with the last
Pop() called on min heap element on the last level and call
Heapify-down(root)

Swap root node with its smaller child Swap node 18 with its smaller child

swap(18, min(3, 6)) swap(18, min(8, 10)) Resultant Min Heap

Runtime:

- The height of the heap is O(logn), so in the worst case, both insertion and deletion
perform O(logn) comparisons and swaps. Therefore the worst-case runtime is O(logn)
(assuming the heap doesn't run out of space).

Bottom Up Heap/ Heapify:
- We can see that if we insert n elements into a priority queue, that would take O(nign).

- We can make this fast if we know all n elements that we want to insert due to the nature
of a heap structure.

- Bottom up heap construction takes O(n)
- Before we begin, note that every leaf is already a 1-element heap.
- For each position i, starting at the last non-leaf and ending at the root,
bubble-down heapli].

- Both subtrees of heapli] are already heaps, so after bubbling-down, the subtree
rooted at heap]i] is a heap.

Intuitively, this is faster because most of the elements of a heap are close to the bottom,
so when we bubble-down each element, most elements do not have to be moved far.
On the other hand, if we build the heap by inserting one element at a time, and
bubble-up each element, in the worst case every element must be moved all the way to
the root.

[[
a-'H"-rLu. .ﬂ'"\r‘“-;
- - - -
.r-‘ - o ’ﬂ' "1_‘
-"T “‘r-"l . T ""_‘:I
A e Mo L
i % # » o * 4 ~
- Lo o o o - i B
] ":l [":l ¥ \:l i] \I] [“ [\
LY LY Y
Yo Yo }n y - ey y = y -
ot L - L ik il
SRngugafafugaly @@@@@@.
vk B e pea it apo b o
(a) ()
i-"" T
.-'ﬁ'--é"'-.. ‘--ﬂ-"L-.“
5 _,,"" -‘-“u i T 3 “-. -
'\- A PR -
I i’ .'
\ -’L \)'
(c)

Figure 9.5: Bottom-up construction of a heap with 15 entries: (a and b) we begin by
constructing 1-entry heaps on the bottom level; (c and d) we combine these heaps
into 3-entry heaps: (e and) we build 7-entry heaps: (g and h) we create the final
heap. The paths of the down-heap bubblings are highlighted in (d, f, and h). For
simplicity, we only show the key within each node instead of the entire entry.

