
Priority Queue

Priority Queue:

- A priority queue is an ADT with the following major methods:
- void add (T x);
- T removeMin();

- Similar to a regular Queue but now each element has a priority or a ranking such that the
one with the highest priority will be removed first.

- It is important that the object being add have a compareTo method that specifies the
comparisons between two instances of that class.

Implementation:

- Unsorted Array:
- We can insert the elements into the queue one by one in no particular order.

- void add (T x) takes O(1) time
- But we must do extra work and make sure we remove each the element with the

highest priority.
- T removeMin() takes O(n) time

- Sorted Array:
- We can insert the elements in order of their priorities.

- void add (T x) takes O(n) time
- We do the extra work in add so we can save time in removing. Since the Queue

is already sorted, we can just remove normally.
- T removeMin() takes O(1) time

- Binary Heap:
- We can do some work in adding and some work in removing.
- The runtime of adding and removing take O(lgn)

Binary Heap:

- A Heap is a binary tree that has the following 2 properties:
- Heap Order:​ At any node the data is smaller than any data of its childrens

subtree.
- Heap Shape: ​All levels of the tree are completely full except the last level which

can be partially filled from left to right.
- A complete tree can be efficiently represented an array. This saves space

because we do not have to store pointers.
- Implementation:

- Using an array. Where the root is located at index 0
- Where are the children of node N?

- Located at index 2n+1 and 2n+2
- Parents of node N?

- (n-1)/2

Source: ​https://www.techiedelight.com/introduction-priority-queues-using-binary-heaps/

- Insertion (Min Heap):
- Place the new element one spot after the last element (the new element

becomes the rightmost element of the bottom level).
- While this element is smaller than its parent:

- Move this element upward by swapping it with its parent.
- Known as Bubble Up
- This process takes O(lgn)

https://www.techiedelight.com/introduction-priority-queues-using-binary-heaps/

- Remove (Min Heap)
- Move the last element (the rightmost element of the bottom level) to the root of

the heap (replacing the previous root).
- While this element is larger than one or both children:

- Move this element downward by swapping it with its smaller child.
- Known as Bubble Down
- This process takes O(lgn)

Runtime:

- The height of the heap is O(logn), so in the worst case, both insertion and deletion
perform O(logn) comparisons and swaps. Therefore the worst-case runtime is O(logn)
(assuming the heap doesn't run out of space).

Bottom Up Heap/ Heapify:

- We can see that if we insert n elements into a priority queue, that would take O(nlgn).
- We can make this fast if we know all n elements that we want to insert due to the nature

of a heap structure.
- Bottom up heap construction takes O(n)
- Before we begin, note that every leaf is already a 1-element heap.

- For each position i, starting at the last non-leaf and ending at the root,
bubble-down heap[i].

- Both subtrees of heap[i] are already heaps, so after bubbling-down, the subtree
rooted at heap[i] is a heap.

- Intuitively, this is faster because most of the elements of a heap are close to the bottom,
so when we bubble-down each element, most elements do not have to be moved far.

- On the other hand, if we build the heap by inserting one element at a time, and
bubble-up each element, in the worst case every element must be moved all the way to
the root.

