
Iterator/ Comparables

Iterators

- An iterator is an object that allows you to transverse through an collection of items one at
a time.

- In data structures that don’t allow accessing elements using index, the only way to
iterate through the elements are by using iterators.

- A class that is iterable in the JCF implements the Iterable interface
(https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html). The interface only
has one method that returns an iterator object.

- The iterator class is implements the Iterator
interface(https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html) which contains
3 methods:

- hasNext() -> returns the next element
- next() -> returns true if there is a next element
- remove() -> removes the last seen elements, typically not implemented
- These methods should run O(1)

import java.util.Iterator;

public class IterableObject<T> implements Iterable<T>{

 public Iterator<T> iterator(){

 return new ObjectIterator<T>(front);

 }

}

class ObjectIterator<T> implements Iterator<T>{

 private T current;

 public ObjectIterator(T c){

 current = c;

 }

 public T next(){

 T answer = current.getData();

 current = current.getNext();

 return answer;

 }

 public boolean hasNext(){

 return current!=null;

 }

https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html

 public void remove(){

 throw new UnsupportedOperationException();

 }

}

ForEach Loop
- Java allows for-each loops

for([object] : [structure])

 [action];

- Example of for each:
for(Integer x : s){

 System.out.println(x);

}

- This translates to:
Itertor<Integer> iter = S.iterator();

while(iter.hasNext())

 System.out.println(iter.next());
- For each object in the structure perform this action
- In order for this to work, the structure must be Iterable
- However, you cannot remove elements during a for-each loop

Comparable/Comparator

- Java provides two interfaces to sort objects using data memebers:
- Comparable

(https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html)
- Comparator (https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html)

- Of the two, we will be using Comparable since it is much easier to use and understand.

Comparable

- A comparable object is capable of comparing itself to another object. The objects class
itself implements the Comparable interface to compare it instances

- The comparable interface only has one method, compareTo(T y)
- The compareTo method compares the object(x) to another object(y) being passed in by:

- If x < y returns an integer < 0
- If x > y returns an integer > 0
- If x == y returns 0

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

