
Binary Search Tree

BST:

- A binary search tree(BST) is a tree where the key in any node is larger than the keys in
all nodes in the node’s left subtree and smaller than the keys in all nodes in that nodes
right subtree

- This property allows us to efficiently search for a key
- Each subtree is itself a binary search tree
- The left and right pointers for leaf nodes are sentinels that are used a placeholders. But

we can cut down on the memory used by carefully using null references instead.
- In order traversal of a BST will go through the elements in sorted order.

Source: Goodrich

Searching:
- We begin by checking the roots key with our target key.

- If it is the key we are looking for than return true, we found the target key.
- If target’s key < root's key, search the left subtree.
- If target’s key > root's key, search the right subtree.

- We repeat this process until we find the target (successful search) or reach a null
subtree (unsuccessful search).

Source: Goodrich

Analysis:
- The running time is dependent on the shape of the tree which in turn depends on the

order in which the keys are inserted.
- We assume that the keys are random or that they are inserted in a random order. Then

with each recursive call, the node moves down a level in the tree. Starting from the root
until it hits a leaf node.

- At best, this number is bounded by h + 1, where h is the height of the tree.
- If the tree is perfectly balanced, then the runtime is O(h) or O(lgn)
- But if the tree is not balanced, then at worst the nodes were inserted in sorted order.

- Then the tree height will be n, and the runtime will be O(n)
- The balance in typical trees turns out to be much closer to the best case than worst

case.

Inserting:

- Inserting is similar to searching
- First we search for the key we want to insert.

- If it exists then do nothing as we already have this key
- If it doesn’t, then the null reference we hit on the path to check if the key already

exist, replace that null reference with a new node containing the new key.

Source: Goodrich

Deleting:

- First we find the node we want to remove, call this node targetNode
- There are 3 possible situations can occur:

- No children
- Update parent's left or right pointer to null (depending on whether

targetNode is a left child or a right child).
- 1 Child

- Update parent's pointer to point to targetNode’s child.
- 2 Children

- Replace targetNode with its successor (the successor is the smallest
node in the right subtree or leftmost node).

- Then delete the successor from the right subtree (deleting the successor
will be one of the first 2 cases).

Source: https://www.geeksforgeeks.org/binary-search-tree-set-2-delete/

