
Self-Balancing Trees (AVL) 
 
Background: 

- Issues with BST, the runtime of search, insert, and deletion is proportional to the height 
of the tree 

- The expected height of the tree is logn, so O(logn) 
- However the worst case is when the data is inserted in sorted order, the height of the 

tree is n, O(n) 
- We use a self balancing tree to achieve a worst case height of O(logn) 

- AVL Trees 
- Red Black Trees 

 
AVL Tree: 

- A binary search tree that balances it height after insertion and deletion. 
- Height balanced tree: 

- This means that for any node, the heights of its two subtrees differ by at most 1 
- The height of an AVL tree with n nodes is O(logn) 
- Proof 

- Let n(h) = the minimum number of nodes in a tree of height h. 
- This minimal tree has a root and subtrees of heights h-1 and h-2, 
- where each subtree is also a minimal tree.  Therefore, 
- n(h) = 1 + n(h-1) + n(h-2) 
- n(h) > n(h-1) + n(h-2) 
- n(h) > n(h-2) + n(h-2)     (because n(h-1) > n(h-2)) 
- n(h) > 2 · n(h-2) 
- n(h) > 22 · n(h-4)         (because n(h-2) > 2n(h-4)) 
- ...                        (repeat) 
- n(h) > 2(h-1)/2 · n(1)      (if h is odd) 
- n(h) > 2(h-2)/2 · n(2)      (if h is even) 
- n(h) > 2(h-2)/2             (true in both cases) 
- log(n(h)) > (h-2)/2        (take the log of both sides) 
- h < 2log(n(h)) + 2         (multiply by 2, then add 2) 
- h < 2logn + 2              (because n(h) ≤ n) 
- h = O(logn) 

- Balanced/Unbalanced: 
- Given a tree T, we say that a position is balanced if, the absolute value of the 

difference in height between its children is at most 1. Otherwise it is unbalanced 
- Insertion and Deletions: 

- We begin with a normal insertion or deletion as with BST. From the new/deleted 
node, we move upward through the tree until we find the first unbalanced node (a 
node whose subtrees differ in height by more than 1).  

- Let Z be the unbalanced node 



- Let Y be the child of Z with greater height, and X be the child of Y with greater 
height 

- In insertion, all 3 will be ancestors of the new node. In deletion, if Y has 2 children 
with the same height, choose X such that both directions are the same.  

- y is left child of z and x is left child of y (Left Left Case) 
- y is left child of z and x is right child of y (Left Right Case) 
- y is right child of z and x is right child of y (Right Right Case) 
- y is right child of z and x is left child of y (Right Left Case) 

 

 
- Rotations: 



- After any insertion or deletion, if the tree is unbalanced, we perform a single or 
double rotation to rebalance the tree 

- A rotation changes the structure of a subtree so that one of the root's children 
becomes the new root.  

- There are two types of rotation, a left rotation and a right rotation 
 

 

 







 


