Self-Balancing Trees (AVL)

Background:
- Issues with BST, the runtime of search, insert, and deletion is proportional to the height
of the tree
- The expected height of the tree is logn, so O(logn)
- However the worst case is when the data is inserted in sorted order, the height of the
tree is n, O(n)
- We use a self balancing tree to achieve a worst case height of O(logn)
- AVL Trees
- Red Black Trees

AVL Tree:
- A binary search tree that balances it height after insertion and deletion.
- Height balanced tree:
- This means that for any node, the heights of its two subtrees differ by at most 1
- The height of an AVL tree with n nodes is O(logn)
- Proof
- Let n(h) = the minimum number of nodes in a tree of height h.
- This minimal tree has a root and subtrees of heights h-1 and h-2,
- where each subtree is also a minimal tree. Therefore,
- n(h)=1+n(h-1) + n(h-2)
- n(h)>n(h-1) + n(h-2)
- n(h)>n(h-2) + n(h-2) (because n(h-1) > n(h-2))
- n(h)>2-n(h-2)
- n(h)>2%-n(h-4) (because n(h-2) > 2n(h-4))
- (repeat)
- n(h)>20Y2.n(1) (if his odd)
- n(h)>2M22.n(2) (ifhis even)
- n(h) > 20272 (true in both cases)
- log(n(h)) > (h-2)/2 (take the log of both sides)
- h<2og(nh)) +2 (multiply by 2, then add 2)
- h<2logn+2 (because n(h) < n)
- h=0(logn)
- Balanced/Unbalanced:
- Given atree T, we say that a position is balanced if, the absolute value of the
difference in height between its children is at most 1. Otherwise it is unbalanced
- Insertion and Deletions:
- We begin with a normal insertion or deletion as with BST. From the new/deleted
node, we move upward through the tree until we find the first unbalanced node (a
node whose subtrees differ in height by more than 1).
- Let Z be the unbalanced node



- LetY be the child of Z with greater height, and X be the child of Y with greater
height

- Ininsertion, all 3 will be ancestors of the new node. In deletion, if Y has 2 children
with the same height, choose X such that both directions are the same.

- yisleft child of zand x is left child of y (Left Left Case)

- yisleft child of z and x is right child of y (Left Right Case)

- yisright child of z and x is right child of y (Right Right Case)

- yisright child of z and x is left child of y (Right Left Case)

a) Left Left Case

T1, T2, T3 and T4 are subtrees.

2 Yy
/N /N
vy T4 Right Rotate (z) X z
I > FINE S
X T3 T T2 T3 Td
FA
T T2

b) Left Right Case

z z x
FA VA i
y T4 Left Rotate (y) x T4 Right Rotate(z) y
T > A B,
1 x ¥y T3 T1 T2
PR £
T2 T3 T1 T2

c) Right Right Case

z ¥
/N /A
T ¥y Left Rotate(z) o x
/N s e - > £\ /A
T2 b4 Tl T2 T3 T4
/A
T3 T4

d) Right Left Case

z z X
A /N i
Ui y Right Rotate (y) T X Left Rotate(z) = v

F A T > S = /
X T4 T2 y TLI T2 T3
!\ /N
T2 T3 T3 T4

- Rotations:



- After any insertion or deletion, if the tree is unbalanced, we perform a single or
double rotation to rebalance the tree

- Arotation changes the structure of a subtree so that one of the root's children
becomes the new root.

- There are two types of rotation, a left rotation and a right rotation

Rotating Right, node with value
10 as pivot




+2

+1
n ()
0
A &) (=
() &
+2

Left rotate, node with value 30
+1 Taken as pivot

:>\<Z}>




Insert node 7

Left rotation,
5 as pivot
2
Right rotation,

dﬂ as pivot




+2

Left Rotation, 9
as pivot

0

Right Rotation, 16
as pivot




