Class 20

2D Arrays
2D Arrays

• An array is like a row of boxes

```
0 1 2 3 4
```

• A 2D array is like rows of boxes stacked on top of each other

```
0 1 2 3 4
```
```
0
1
```
2D Arrays

• Think of 2D arrays as an “array of arrays”
• A 2D array can be considered as a table, with rows and columns
• All elements in a 2D array must be of the same type, just as with 1D arrays
Notation

• Declaration
 • data_type array_name[rows][columns]

• Initialization
 • data_type array_name[rows][columns] = {{initialize row_1}, {initialize row_2}, ...
 ..., {initialize row_n}}

• Reference an individual array element
 • array_name[row_no][col_no]
Process 2D arrays

- For 1D arrays, process elements using loop
- For 2D arrays, process elements using nested loops
- Sometimes we process row by row, sometimes column by column

<table>
<thead>
<tr>
<th>row-by-row processing</th>
<th>column-by-column processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (int r = 0; r < ROW_CAPACITY; r++) {</td>
<td></td>
</tr>
<tr>
<td>for (int c = 0; c < COL_CAPACITY; c++) {</td>
<td></td>
</tr>
<tr>
<td>PROCESS ARRAY_NAME [r] [c];</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>for (int c = 0; c < COL_CAPACITY; c++) {</td>
<td></td>
</tr>
<tr>
<td>for (int r = 0; r < ROW_CAPACITY; r++) {</td>
<td></td>
</tr>
<tr>
<td>PROCESS ARRAY_NAME [r] [c];</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>
Example 1

• Declare and initialize 2D array
• Determine which row has the largest sum
• Plan:
 • Declare variables for maxSum and maxRow
 • Initial value for maxSum should be a sum of one of the rows
 • Iterate through 2D array row by row, summing the elements in each row
 • After summing a row, compare that row’s sum to maxSum
 • If maxSum < rowSum, update maxSum and maxRow to current sum and row values
Example 2

• Compute average value stored in each row of a 2D array

• Plan:
 • Declare 1D array called average with same number of boxes as rows in the 2D array
 • Iterate through each row of the 2D array, adding that row’s elements into a sum variable
 • After summing the row, divide the sum by the number of elements in the row and store the average for that row in average[r]
Example 3

• Determine which column of a 2D array has the largest value

• Plan:
 • Declare variables for maxSum and maxCol
 • Initial value for maxSum should be a sum of one of the columns
 • Iterate through 2D array column by column, summing the elements in each column
 • After summing a column, compare that column’s sum to maxSum
 • If maxSum < colSum, update maxSum and maxCol to current sum and col values