
Agenda / Learning Objectives:
1. Map out a plan to study for mid-term 2.
2. Review the C++ operators up to logical operators.
3. Read about the tips and pitfalls on using arrays (see below.)
4. Understand 1D array and get familiar with different types of

questions about array in exams.

http://www.cplusplus.com/doc/tutorial/operators/

Tips (from chapter 5 of Absolute C++ textbook)

Initializing Arrays. In initializing an array,

 int children[3] = {1, 12, 1};
the number of initializers must be no greater than the declared size of the array. There can be fewer
initializers. In such an event the first array entries will be initialized from the list, the C++ Standard
says the arrays are to be initialized to a zero appropriate to the type. Note that this is true even for
primitive types and for class types, where the default constructor is used for the “zero of appropriate
type.” However, if there are no initializers, and the base type is primitive, the array is not initialized
at all. If the base array type is a class type, if there are no initializers, the default constructor is
called for each array item.

Do Not Skimp on Formal Parameters. There is sometimes a tendency to use global variables
instead of passing formal parameters to functions (e.g., the size of an array). However, the use of
formal parameters makes the code more readable and modular which makes it easier to maintain
and less likely to contain errors.

Memory Layout for Multidimensional Arrays. The layout in memory of a multidimensional
array helps to explain why it is necessary to specify the all indices except the first. If you declare an
array with more than one index, as you move through the memory that the array occupies, the last
index changes most rapidly:
 char x[3][4];

Mem Addr: 1000 1001 1002 1003 1004 1005
 x[0][0] x[0][1] x[0][2] x[0][3] x[1][0] x[1][1]

 1006 1007 1008 1009 1010 1011
 x[1][2] x[1][3] x[2][0] x[2][1] x[2][2] x[2][3]

If this were a three index array:
 char x[3][2][4]

Then if the memory address of x[0][0][0] is 1000, the rest of the memory addresses are:

Mem Adr: 1000 1001 1002 1003
array elemt x[0][0][0] x[0][0][1] x[0][0][2] x[0][0][3]

 1004 1005 1006 1007
 x[0][1][0] x[0][1][1] x[0][1][2] x[0][1][3]

 1008 1009 1010 1011
 x[1][0][0] x[1][0][1] x[1][][2] x[1][0][3]

 1012 1013 1014 1015
 x[1][1][0] x[1][1][1] x[1][1][2] x[1][1][3]

 1016 1017 1018 1019
 x[2][0][0] x[2][0][1] x[2][0][2] x[2][0][3]

 1020 1021 1022 1023
 x[2][1][0] x[2][1][1] x[2][1][2] x[2][1][3]

The requirement that function parameters specify all array sizes except the first is a direct
consequence of the memory layout. The extent in memory of the array is determined by the
maximum size of the first index. The organization in memory is determined by the sizes after the
first. If this array had first index size 2 instead of 3, we would have occupied 16 bytes in memory
instead of 24 as above:

Mem Adress: 1000 1001 1002 1003
array elemt x[0][0][0] x[0][0][1] x[0][0][2] x[0][0][3]

 1004 1005 1006 1007
 x[0][1][0] x[0][1][1] x[0][1][2] x[0][1][3]

 1008 1009 1010 1011
 x[1][0][0] x[1][0][1] x[1][][2] x[1][0][3]

 1012 1013 1014 1015
 x[1][1][0] x[1][1][1] x[1][1][2] x[1][1][3]

Pitfalls (from chapter 5 of Absolute C++ textbook)

Array Indices Always Start with Zero. This is a stumbling block for many beginning
students that want to number the first spot in an array as 1. However, the first space in an
array is actually at index zero.

Attempting to Declare an Array with a Non-Constant Size. This is a pitfall, albeit one
many compilers will catch. If you wanted to have an array whose size you could set at
runtime, you might write the following code. Unfortunately, this is illegal, though a few
compilers (g++) allow it.
//To test behavior when arrays are declared, bounds are
// violated
#include <iostream>
using namespace std;
int main()
{
 int x[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 int n;
 cin >> n;
 int y[n]; // Here we have (illegally) declared
 // an array of non-constant size
 for (int i = 0; i < n; i++)
 cout << (y[i] = x[i]) << " " ;
 cout<< endl;
 return 0;
}
The bottom line is that the array size must be known at compile time. The alternative is to
dynamically allocate space on the heap. That is treated later.

Array Index Out of Range. The most common programming error made with arrays is an
attempt to reference a nonexistent array index. Array indexes most commonly get out of
range at the first or last iteration of a loop.

Using commas between array indices with C/C++ arrays. Unlike some other languages,
C++ does not use a comma to separate array indices. If we have an array declared as

char page[30][100];
Then an incorrect attempt to access page[1][5] might be written as

 page[1, 5]
However, a syntax error will not result. Instead, “1,5” is evaluated using the comma
operator. In a comma expression, the expression to the left of the comma is evaluated. If it
produces a value (e.g. is not void) that value is discarded. The expression to the right of the
comma is evaluated. The type and value of the comma expression is the type and value of
the right hand expression. Thus, the comma expression evaluates the index expression “1,
5” by “evaluating” the first integer and ignoring it, then using the value of the second
integer for the value of the expression. The result is

 page[5]
which is a one-dimensional array. This can result in grief for people with experience in
languages that use a comma to separate indices in an array access, and great grief for are
neophytes in computing.

Use of = and == with Arrays. Arrays are constant pointers and may not be assigned to
different memory addresses. This is not the case with dynamic arrays, discussed in Chapter
10. Also, == does not test to see if two arrays have the same contents, but rather if the two
arrays are stored at the same place in memory. If you need to test for equality of arrays,
then you need to write code that explicitly looks at each element in both arrays to see that
they are the same.

Array Questions:
1) Provide the output of the given line in the blanks below.

#include <iostream>
using namespace std;
int main() {

int a[10] = {1, 6, 4, 2, 8, 4, 1, 3, 2, -2};
cout << a[0] << endl; //(1)_________________
cout << a[3] << endl; //(2)_________________
cout << a[5] << endl; //(3)_________________
cout << a[9] << endl; //(4)_________________

for (int i = 0; i < 10; ++i)
 a[i] += i;
cout << a[1] << endl; //(5)_________________
cout << a[2] << endl; //(6)_________________
cout << a[6] << endl; //(7)_________________
cout << a[8] << endl; //(8)_________________
return 0;

}

Writing a program:
2) Write a complete C++ program which carries out the following tasks:

• Declares an integer array of size 10.
• Accepts 10 inputs from a user (to be stored in the array).
• Squares each element of the array.
• Prints the array elements.

3) Write a complete C++ program which carries out the following tasks:

a. Declares an integer array of size 10.
b. Fills the array with random numbers between 1 and 100.
c. Prints the array elements.
d. Gets and prints the maximum number in the array.

Title Lines:
4) (prac2.pdf) Write title lines for the functions that are called by the following main program. Do not
supply the blocks for the functions.

int main() {
int a[5] = {3,1,4,1,5};

printAverage(a, 9);
swap(a, 3, 2);
reverse(a[1]);

// prints average
// swap elements 3 and 2
// reverse the digits in a[1]

if (isPositive(a[0])) cout << "Positive" << endl;

// prints: Positive
cout << midEntry(a, 5) << endl; // prints: 4
return 0;

}

a) Title line for printAverage

b) Title line for swap

c) Title line for reverse

d) Title line for isPositive

e) Title line for midEntry

5) (prac2.pdf) Write title lines (header lines or prototypes) for the following functions. Do not
supply the blocks for the functions.
(a) A function called add3 which returns the sum of three double parameters.

(b) A function called reverseIt that returns the number obtained by reversing the digits in an

integer parameter.

(c) A function called randomArray that sets the values in an array of doubles to have random
values.

(d) A function called addTwo that adds 2 to every entry in an array of integers.

(e) A function called biggerAverage which determines which of two arrays of integers has the
bigger average. It should return the value of this bigger average.

Tracing through a program for output:
6) (prac2.pdf) Consider the following C++ program.

#include <iostream>
using namespace std;

void mystery(int data[], int p, int q) {

data[p] = data[q];
data[q] = data[p];

}

void m2(int &p, int q) {

int temp = p;
p = q;
q = temp;

}
void print(int data[], int p) {

for (int i = 0; i < p; i++)
cout << data[i] << " ";

cout << endl;
}
int main() {

int x[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int y[7] = {0, 1, 2, 3, 4, 5, 6};
int a = 3, b = 4;

print(x, 3); // line (a)
mystery(x, 1, 2); print(x, 5); // line (b)
for (int i = 1; i <= 7; i++) mystery(x, 0 ,i);
print(x, 8); // line (c)
m2(a, b); cout << a << b << endl; // line (d)
m2(y[3], 7); print(y, 6); // line (e)
return 0;

}
(a) What is the output at line (a)?

(b) What is the output at line (b)?

(c) What is the output at line (c)?

(d) What is the output at line (d)?

(e) What is the output at line (e)?

7) (prac3.pdf) Consider the following C++ program.

#include <iostream>
using namespace std;

int recursive (int x) {

if (x < 5) return 3;
return recursive (x / 3) + x % 6;

}
char swap (int x, int y) {

x = y;
y = x;
cout << x << y;
return ’s’;

}
void set (int arr []) {

arr[0] = 1; arr[1] = 9; arr[2] = 6; arr[3] = 8; arr[4] = 3;
}

int main() {

int x[5];
set(x);
swap(1, 2); cout << endl; //line (a)
set(x);
cout << x[0 + 2] << x[0] + 2 << endl; //line (b)
cout << swap(1, 2) << endl; //line (c)
for (int i = 1; i < 4; i++) cout << x[i]; cout << endl; //line (d)
int e = 21;
cout << recursive(e) << endl; //line (e)
return 0;

}

(a) What is the output at line (a)?

(b) What is the output at line (b)?

(c) What is the output at line (c)?

(d) What is the output at line (d)?

(e) What is the output at line (e)?

Short Blocks of code:
8) (prac3.pdf) Write blocks of code to perform the functions used in the following main program.
Your blocks must match the given title lines. Each block should be a short function of only a few
lines.

int main() {

int i = 2;
int x[5] = {3, 1, 4, 1, 5};

// (a) Return the sum. Here 4 is printed.
cout << add(i, 2) << endl;

// (b) Return number of odd entries. Here 4 is printed.
cout << numOdd(x, 5) << endl;

// (c) Multiply i by 2. Here 4 is printed.
doubleIt(i); cout << i << endl;

// (d) Find the index of the largest entry. Here 4 is printed.
cout << findIndexMax(x, 5) << endl;

// (e) Return the absoluteValue. Here 4 is printed.
cout << absoluteValue(i) << endl;

return 0;
}

(a)

(b)

(c)

(d)

(e)

9) (prac3.pdf) Write blocks of code to perform the functions used in the following main program.
Your blocks must match the given title lines. Each block should be a short function of only a few
lines.

int main() {

int x = 5;
double e = 2.718;
double a[4] = {1.0, 2.0, -3.0, -4.0};
double b[2] = {5.5, 4.5};

// (a) Changes the sign. Here to -5
changeSign(x);

// (b) Return first digit after decimal point. Here 7 is printed.
cout << firstDecimal(e) << endl;

// (c) Return the number of negative entries. Here 2 is printed.
cout << numberNeg(a, 4) << endl;

// (d) Test whether the first argument is a factor of the second. Here: Yes
if (isFactor(7, 14)) cout << "Yes\n";

// (e) print average of all entries both arrays: Here 1.0 is printed.
averageArrays(a, 4, b, 2);
return 0;

}

(a)

(b)

(c)

(d)

(e)

	Memory Layout for Multidimensional Arrays. The layout in memory of a multidimensional array helps to explain why it is necessary to specify the all indices except the first. If you declare an array with more than one index, as you move through the m...
	Writing a program:
	Title Lines:
	Tracing through a program for output:
	Short Blocks of code:

