
FUNCTIONS

In C++, a function is a group of statements that is given a name, and which can be
called from some point of the program. The most common syntax to define a function is:

type name (parameter1, parameter2, ...) { statements }

Where:

- type is the type of the value returned by the function.

- name is the identifier by which the function can be called.

- parameters (as many as needed): Each parameter consists of a type followed by an
identifier, with each parameter being separated from the next by a comma. Each
parameter looks very much like a regular variable declaration (for example: int x), and
in fact acts within the function as a regular variable which is local to the function. The
purpose of parameters is to allow passing arguments to the function from the location
where it is called from.

- statements is the function's body. It is a block of statements surrounded by braces {
} that specify what the function actually does.

(created by professor Marina Tanasyuk)

Let's have a look at an example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// function example
#include <iostream>
using namespace std;

int addition (int a, int b) {
 int r;
 r=a+b;
 return r;
}

int main () {
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
}

The result is 8

This program is divided in two functions: addition and main.

Remember that no matter the order in which they are defined, a C++ program always
starts by calling main. In fact, main is the only function called automatically, and the
code in any other function is only executed if its function is called from main (directly or
indirectly).

In the example above, main begins by declaring the variable z of type int, and right
after that, it performs the first function call: it calls addition. The call to a function
follows a structure very similar to its declaration. In the example above, the call
to addition can be compared to its definition just a few lines earlier:

The parameters in the function declaration have a clear correspondence to the
arguments passed in the function call. The call passes two values, 5 and 3, to the
function; these correspond to the parameters a and b, declared for function addition.

At the point at which the function is called from within main, the control is passed to
function addition: here, execution of main is stopped, and will only resume once
the addition function ends. At the moment of the function call, the value of both
arguments (5 and 3) are copied to the local variables int a and int b within the
function.

Then, inside addition, another local variable is declared (int r), and by means of the
expression r=a+b, the result of a plus b is assigned to r; which, for this case, where a is
5 and b is 3, means that 8 is assigned to r.

The final statement within the function:

 return r;

Ends function addition, and returns the control back to the point where the function
was called; in this case: to function main. At this precise moment, the program resumes
its course on main returning exactly at the same point at which it was interrupted by the
call to addition. But additionally, because addition has a return type, the call is
evaluated as having a value, and this value is the value specified in the return statement
that ended addition: in this particular case, the value of the local variable r, which at
the moment of the return statement had a value of 8.

Therefore, the call to addition is an expression with the value returned by the function,
and in this case, that value, 8, is assigned to z. It is as if the entire function call
(addition(5,3)) was replaced by the value it returns (i.e., 8).

Then main simply prints this value by calling:

 cout << "The result is " << z;

A function can actually be called multiple times within a program, and its argument is
naturally not limited just to literals:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// function example
#include <iostream>
using namespace std;
int subtraction (int a, int b) {
 int r;
 r=a-b;
 return r;
}
int main () {
 int x=5, y=3, z;
 z = subtraction (7,2);

 cout << "The first result is " << z << '\n';
 cout << "The second result is " <<
subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction
(x,y) << '\n';
 z = 4 + subtraction (x,y);
 cout << "The fourth result is " << z << '\n';
}

The first
result is 5
The second
result is 5
The third
result is 2
The fourth
result is 6

Math	
 functions	

Header	
 <cmath>	
 declares	
 a	
 set	
 of	
 functions	
 to	
 compute	
 common	
 mathematical	

operations	
 and	
 transformations:	

• Trigonometric	
 functions
• Exponential	
 and	
 logarithmic	
 functions
• Power	
 functions:
pow(base,	
 power)	
 -­‐> pow(3,	
 2)	
 =	
 3	
 ^	
 2	
 =	
 9	

sqrt(value)	
 -­‐> sqrt(16)	
 =	
 4	

• Rounding	
 and	
 remainder	
 functions:
ceil(value)	
 -­‐> round	
 up	
 value	
 -­‐>	
 ceil(2.3)	
 =	
 3	

floor(value)	
 -­‐> round	
 down	
 value	
 -­‐>	
 floor(2.8)	
 =	
 2	

round(value)	
 -­‐> round	
 to	
 nearest	
 -­‐>	
 	
 round(2.3)	
 =	
 2	

• Minimum,	
 maximum,	
 difference	
 functions
• Other	
 functions:
abs(value)	
 -> abs(-4)	
 =	
 4	

rand()	
 function	

(included	
 in	
 <cstdlib>	
 library)	

Returns	
 a	
 pseudo-­‐random	
 integral	
 number	
 in	
 the	
 range	
 between	
 0	
 and	
 RAND_MAX.	

RAND_MAX	
 -­‐	
 this	
 value	
 is	
 library-­‐dependent,	
 but	
 is	
 guaranteed	
 to	
 be	
 at	

least	
 32767	
 on	
 any	
 standard	
 library	
 implementation.	

A	
 typical	
 way	
 to	
 generate	
 trivial	
 pseudo-­‐random	
 numbers	
 in	
 a	
 determined	
 range	

using	
 rand	
 is	
 to	
 use	
 the	
 modulo	
 of	
 the	
 returned	
 value	
 by	
 the	
 range	
 span	
 and	
 add	
 the	

initial	
 value	
 of	
 the	
 range:	

rand()	
 %	
 v2	
 +	
 v1	

v1	
 is	
 the	
 starting	
 point	
 of	
 the	
 range,	
 including	
 (by	
 default	
 is	
 0)	

v2	
 is	
 how	
 many	
 numbers	
 should	
 be	
 in	
 the	
 range	

Examples:	

v1	
 =	
 rand()	
 %	
 100;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 v1	
 in	
 the	
 range	
 0	
 to	
 99	
 	

v2	
 =	
 rand()	
 %	
 100	
 +	
 1;	
 	
 	
 	
 	
 	
 //	
 v2	
 in	
 the	
 range	
 1	
 to	
 100	
 	

v3	
 =	
 rand()	
 %	
 30	
 +	
 1985;	
 	
 	
 	
 //	
 v3	
 in	
 the	
 range	
 1985-­‐2014	

	FUNCTIONS
	Math Functions
	rand()

