
FUNCTIONS

In C++, a function is a group of statements that is given a name, and which can be
called from some point of the program. The most common syntax to define a function is:

type name (parameter1, parameter2, ...) { statements }

Where:

- type is the type of the value returned by the function.

- name is the identifier by which the function can be called.

- parameters (as many as needed): Each parameter consists of a type followed by an
identifier, with each parameter being separated from the next by a comma. Each
parameter looks very much like a regular variable declaration (for example: int x), and
in fact acts within the function as a regular variable which is local to the function. The
purpose of parameters is to allow passing arguments to the function from the location
where it is called from.

- statements is the function's body. It is a block of statements surrounded by braces {
} that specify what the function actually does.

(created by professor Marina Tanasyuk)

Let's have a look at an example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// function example
#include <iostream>
using namespace std;

int addition (int a, int b) {
 int r;
 r=a+b;
 return r;
}

int main () {
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
}

The result is 8

This program is divided in two functions: addition and main.

Remember that no matter the order in which they are defined, a C++ program always
starts by calling main. In fact, main is the only function called automatically, and the
code in any other function is only executed if its function is called from main (directly or
indirectly).

In the example above, main begins by declaring the variable z of type int, and right
after that, it performs the first function call: it calls addition. The call to a function
follows a structure very similar to its declaration. In the example above, the call
to addition can be compared to its definition just a few lines earlier:

The parameters in the function declaration have a clear correspondence to the
arguments passed in the function call. The call passes two values, 5 and 3, to the
function; these correspond to the parameters a and b, declared for function addition.

At the point at which the function is called from within main, the control is passed to
function addition: here, execution of main is stopped, and will only resume once
the addition function ends. At the moment of the function call, the value of both
arguments (5 and 3) are copied to the local variables int a and int b within the
function.

Then, inside addition, another local variable is declared (int r), and by means of the
expression r=a+b, the result of a plus b is assigned to r; which, for this case, where a is
5 and b is 3, means that 8 is assigned to r.

The final statement within the function:

 return r;

Ends function addition, and returns the control back to the point where the function
was called; in this case: to function main. At this precise moment, the program resumes
its course on main returning exactly at the same point at which it was interrupted by the
call to addition. But additionally, because addition has a return type, the call is
evaluated as having a value, and this value is the value specified in the return statement
that ended addition: in this particular case, the value of the local variable r, which at
the moment of the return statement had a value of 8.

Therefore, the call to addition is an expression with the value returned by the function,
and in this case, that value, 8, is assigned to z. It is as if the entire function call
(addition(5,3)) was replaced by the value it returns (i.e., 8).

Then main simply prints this value by calling:

 cout << "The result is " << z;

A function can actually be called multiple times within a program, and its argument is
naturally not limited just to literals:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// function example
#include <iostream>
using namespace std;
int subtraction (int a, int b) {
 int r;
 r=a-b;
 return r;
}
int main () {
 int x=5, y=3, z;
 z = subtraction (7,2);

 cout << "The first result is " << z << '\n';
 cout << "The second result is " <<
subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction
(x,y) << '\n';
 z = 4 + subtraction (x,y);
 cout << "The fourth result is " << z << '\n';
}

The first
result is 5
The second
result is 5
The third
result is 2
The fourth
result is 6

Math	 functions	

Header	 <cmath>	 declares	 a	 set	 of	 functions	 to	 compute	 common	 mathematical	
operations	 and	 transformations:	

• Trigonometric	 functions
• Exponential	 and	 logarithmic	 functions
• Power	 functions:
pow(base,	 power)	 -‐> pow(3,	 2)	 =	 3	 ^	 2	 =	 9	
sqrt(value)	 -‐> sqrt(16)	 =	 4	

• Rounding	 and	 remainder	 functions:
ceil(value)	 -‐> round	 up	 value	 -‐>	 ceil(2.3)	 =	 3	
floor(value)	 -‐> round	 down	 value	 -‐>	 floor(2.8)	 =	 2	
round(value)	 -‐> round	 to	 nearest	 -‐>	 	 round(2.3)	 =	 2	

• Minimum,	 maximum,	 difference	 functions
• Other	 functions:
abs(value)	 -> abs(-4)	 =	 4	

rand()	 function	

(included	 in	 <cstdlib>	 library)	

Returns	 a	 pseudo-‐random	 integral	 number	 in	 the	 range	 between	 0	 and	 RAND_MAX.	
RAND_MAX	 -‐	 this	 value	 is	 library-‐dependent,	 but	 is	 guaranteed	 to	 be	 at	
least	 32767	 on	 any	 standard	 library	 implementation.	

A	 typical	 way	 to	 generate	 trivial	 pseudo-‐random	 numbers	 in	 a	 determined	 range	
using	 rand	 is	 to	 use	 the	 modulo	 of	 the	 returned	 value	 by	 the	 range	 span	 and	 add	 the	
initial	 value	 of	 the	 range:	
rand()	 %	 v2	 +	 v1	
v1	 is	 the	 starting	 point	 of	 the	 range,	 including	 (by	 default	 is	 0)	
v2	 is	 how	 many	 numbers	 should	 be	 in	 the	 range	

Examples:	
v1	 =	 rand()	 %	 100;	 	 	 	 	 	 	 	 	 	 //	 v1	 in	 the	 range	 0	 to	 99	 	
v2	 =	 rand()	 %	 100	 +	 1;	 	 	 	 	 	 //	 v2	 in	 the	 range	 1	 to	 100	 	
v3	 =	 rand()	 %	 30	 +	 1985;	 	 	 	 //	 v3	 in	 the	 range	 1985-‐2014	

	FUNCTIONS
	Math Functions
	rand()

