
ARRAYS
CS111 Lab

Queens College, CUNY

Instructor: Kent Chin

I/O WITH MULTIPLE VARIABLES

//Inputting 5 numbers and averaging them
int main() {

int x1, x2, x3, x4, x5;
cout << “Enter 5 numbers: “;
cin >> x1 >> x2 >> x3 >> x4 >> x5;

double avg = (x1 + x2 + x3 + x4 + x5) / 5.0;
cout << “Average: “ << avg << endl;

return 0;
}

Now how about a program to store and calculate the average of
30 exam grades? Should we create 30 variables? Of course not!
Luckily, C++ has an easy way to manage many variables.

INTRODUCING ARRAYS
Arrays enable us to work with any number of variables! Arrays have
the following properties:
• Data-type – Can be int, char, double, string, bool, etc
• Name – Arrays have names just like variables do!
• Size – How many array “boxes” would you like?

int grades[10];

Data-type Name Size

This is an int array of size 10!
This is as good as making 10
individual integer variables!

ARRAYS IN MEMORY

grades:

0 1 2 3 4 5 6 7 8 9

Array indexes
always start
at 0…

…and always

end at [length

of array] - 1

array
indexes

Each “box” of any array is a variable with the data-type of the array! In

the example above, each box of the array is an integer variable! You
can access an array box/element as follows: array_name[array_index]

int grades[10];

ARRAY ACCESS WITH FOR-LOOPS

We usually use for-loops to traverse (travel across) arrays! Again,

remember that array indexes start from 0 and end at array_size-1:

Our “usual” loop
for (int i = 0; i < n; ++i) { //”n” is the size of the array

…do something with array element at index i…
}

You may also do the following, though the loop above is preferred:
for (int i = 0; i <= n-1; ++i) {

…do something with array element at index i…
}

ARRAYS INITIALIZATION AND ACCESS

4 7 -1array:

0 1 2

//print individually
cout << array[0]; //4
cout << array[1]; //7
cout << array[2]; //-1

int array[3] = {4, 7, -1}; //initialization

//assign individually
array[0] = 5; //5
array[1] = array[0]; //5
array[2] = array[1] + 2; //7

//print with loop
for (int i = 0; i < 3; ++i)
cout << array[i] << endl;

//assign with loop
for (int i = 0; i < 3; ++i)

array[i] = i;

PROGRAM EXAMPLE
//Inputting 30 grades and averaging them
int main() {

int grades[30]; //making room in memory for 30 integers

for (int i = 0; i < 30; ++i) {
cout << “Enter grade #” << i+1 << “: “;
cin >> grades[i]; //yes, this is possible!

} //remember that each element of grades is an int variable!

double avg = 0;
for (int i = 0; i < 30; ++i)

avg += grades[i];

cout << “Class average: “ << avg/30 << endl;
return 0;

}

DON’T DO THIS
int n;
cout << “Enter a size: “;
cin >> n;

int array[n]; //BIG NO-NO!!!

Chances are your compiler may allow this, but what you see above is

illegal by C++ standards! Don’t do it. In this course, we’ll stick with arrays
with “set” sizes (i.e. sizes known while writing the program):

int array[1000];
for (int i = 0; i < 100; ++i) {

cin >> array[i];
} //you need not use every element of the array you declared!

ARRAYS AND FUNCTIONS

void print(int array[], int size) {
for (int i = 0; i < size; ++i) {

cout << array[i] << “ “;
}
cout << endl;

}

Typical array print function:

int main() {
int a[4] = {1, 4, 0, 8};

//pass the NAME of the array
//to the function!
print(a, 4);

return 0;
}

In main():

void print(int array[4], int size) {
for (int i = 0; i < size; ++i) {

cout << array[i] << “ “;
}
cout << endl;

}

Optional: Put array size in parameter

Output
1 4 0 8

ARRAYS AND FUNCTIONS

void add5(int array[], int size) {
for (int i = 0; i < size; ++i)

array[i] += 5;
}

void print(int array[], int size) {
for (int i = 0; i < size; ++i) {

cout << array[i] << “ “;
}
cout << endl;

}

Arrays are always “passed by
reference”.

int main() {
int a[4] = {1, 4, 0, 8};

cout << “Now: “;
print(a, 4);

add5(a, 4);

cout << “Later: “;
print(a, 4);

return 0;
}

In main():

Output
Now: 1 4 0 8
Later: 6 9 5 13

