Course Outline
1 Review of basics (estimate 1 – 3 lectures)

1. Variable types (‘strong typing’)
2. Conditional statements, branching
3. **Switch statement**?
4. Loops — nested loops, break, continue
5. **Scoping of variables**?
6. Arrays & references
7. Functions — call by value, call by reference, return type (void, non-void)
8. *const references* (use in function arguments)
9. Recursion
2 Functions new properties? (estimate 1 lecture)

1. Function overloading (*beware of ambiguity*)
2. Default arguments (*beware of ambiguity*)
3. Static functions
4. Static variables (*dangers of usage*)
3 Namespaces (estimate 1/2 lecture)

1. Collision of function names (especially in large projects)
2. Disambiguation using namespaces
4 Pointers 1 (estimate 1 lecture)

1. Definition of pointer
2. NULL pointer
3. Dereference ‘*’ and address-of ‘&’ operators
4. Relation of pointers and arrays
5. Pointers in function arguments (*compare/contrast to use of references, pointers can be null*)
6. `const pointer` — `const int *pci = &a;` value of *pci cannot be changed
7. Array of pointers (*impossible to have array of references, why?*)
8. dangling pointers — (*danger of using pointers*)
9. AVOID FOR NOW:
 (a) Dynamic memory allocation (operator `new`, `delete`)
 (b) Pointer arithmetic `p+i`, `p2-p1`, `p1 < p2`
 (c) Reference to pointer, pointer to reference
 (d) `int * const cpi = &a;` cpi cannot be reset to a different memory address
5 Objects: encapsulation (estimate 2 – 4 lectures)

1. Objects as containers of data
2. Private, public data
3. Private, public class methods
4. Inline, non-inline declarations
5. Mutator/accessor methods
6. \texttt{const data}
7. \texttt{const methods} (accessor, etc.)
8. \texttt{static data} — how to initialize?
9. \texttt{static methods} – (do NOT need to instantiate class object)
10. Constructor, destructor, copy & assignment, default constructor
11. Memberwise data initialization
12. Necessity of \texttt{const} reference in copy constructor
13. Necessity of \texttt{this} pointer in assignment operator — (must teach pointers first!)
14. Deep copy & shallow copy
6 Objects: operator overloading & friend functions (estimate 1/2–1 lectures)

1. Concept of overloading

2. Friend functions — access to private data
7 Objects: inheritance (estimate 3 – 4 lectures)

1. Objects as specializations of a base class
2. Base class — (what is it?)
3. Constructor of derived class
4. Destructor of derived class
5. Protected data & methods
6. Additional data in derived class
7. Additional methods in derived class
8. Order of construction (base to top) and destruction (top to base)
9. Depth of inheritance: A (= base), B, C, etc.
10. AVOID:
 (a) Non-public inheritance.
 (b) Multiple inheritance, public virtual, etc.
8 Objects: polymorphism (estimate 3 – 4 lectures)

1. Virtual functions
 (a) Overriding of virtual functions
 (b) Redefinition of non-virtual functions = bad idea

2. Virtual destructor in base class

3. Danger of calling virtual functions in constructor — (order of construction)

4. Danger of default arguments in virtual functions

5. Use of pointer (or reference) to base class.

6. Abstract base class
 (a) Pure virtual functions
 (b) Protected constructor in base class

7. Concept of interface
9 Pointers 2 (estimate 1 – 2 lectures)

1. Dynamic memory allocation = operator \texttt{new, delete, new [], delete []}

2. Pointer arithmetic \texttt{p+i, p2-p1, p1 < p2}

3. Reference to pointer, pointer to reference

4. \texttt{int * const cpi = &a}; cpi cannot be reset to a different memory address
10 String class (estimate 2 lectures)

1. What to say?
11 Templates (estimate 1 lecture)

1. What to say?
12 STL (Standard C++ library) (estimate 2 – 3 lectures)

1. Concept of generic programming
2. Container classes = vector, set, map
3. Iterators
4. Algorithms