CS320: Problems and Solutions for Days 9-13, Winter 2023

Problem 1 For each of the following six languages, give the best possible classification of that language into one of the following classes:

regular
context-free
recursive
recursively enumerable
not recursively enumerable

Your classification of a language is the best possible if the class which you indicate indeed contains that language, while no other listed class which is a proper subset of your class contains that language.

1. The language consisting of pairs $(R(M), w)$, where $R(M)$ is a representation of Turing machine M and M halts on input w.
Answer: Recursively enumerable.
2. The language consisting of representations of Turing machines that do not halt on blank tape.

Answer: Not recursively enumerable.
3. \varnothing.

Answer: Regular.
4. $\{0,1,111,00\}$.

Answer: Regular.
5. The language generated by the grammar:
$G=\{\{S\},\{a, b\}, P, S\}$, where P is given by:
$S \rightarrow a S|b S| \lambda$.
Answer: Regular.
6. The union of two arbitrary recursive languages.

Answer: Recursive.

Problem 2 (a) Give an example of a language that is not regular but has an infinite regular subset and an infinite regular superset. Give a precise definition of these three languages and explain your answer briefly. If such a language does not exist, explain why.
Answer: One example is the complement $\overline{L_{2}}$ of the language L_{2}, defined as follows:

$$
L_{2}=\left\{a^{k} b^{k} \mid k \geq 0\right\}
$$

L_{2} is a canonical non-regular language, as is readily proved by Pumping Lemma. Hence, its complement $\overline{L_{2}}$ is not regular. However, $\overline{L_{2}}$ contains infinite regular subsets, like \boldsymbol{a}^{*} or \boldsymbol{b}^{*}. Straightforwardly, $\overline{L_{2}}$ is a subset of $(\boldsymbol{a} \cup \boldsymbol{b})^{*}$, which is evidently regular, and thereby a regular superset of $\overline{L_{2}}$.
(b) Give an example of a language that is not context-free but has an infinite context-free subset and an infinite context-free superset. Give a precise definition of all these three languages and explain your answer briefly. If such a language does not exist, explain why.
Answer: The language:

$$
L_{4}=\left\{a^{k} b^{m} c^{k} d^{m} \mid k, m \geq 0\right\}
$$

is not context-free, as is readily proved by Pumping Lemma. However, its subset:

$$
L_{2}=\left\{a^{k} c^{k} \mid k \geq 0\right\}
$$

(obtained by fixing $m=0$ in the template for L_{4}) is a canonical context-free language. Straightforwardly, L_{4} is a subset of $\{a, b, c, d\}^{*}$, which is evidently regular and thereby context-free.
(c) Give an example of a language that is not recursively enumerable but has a recursively enumerable complement. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: One example is the complement $\overline{L_{H}}$ of the halting-problem language, defined as follows:

$$
L_{H}=\{(M, w) \mid(M, w) \searrow\}
$$

L_{H} is the set of all pairs (machine,input) such that the machine halts on the input. L_{H} is recursively enumerablethe universal Turing machine accepts it. However, since L_{H} is known not to be decidable (recursive), its complement $\overline{L_{H}}$ cannot be recursively enumerable.

Problem 3 For each of the following claims, circle the word "yes" that follows the claim if the claim is correct, and circle the word "no" that follows the claim if the claim is not correct.

1. The union of any two regular languages is context-free.

Answer: Yes, in fact it is regular.
2. The intersection of any two regular languages is regular.

Answer: Yes.
3. The union of any two context-free languages is regular.

Answer: No-but it is context-free.
4. The intersection of any two context-free languages is context-free.

Answer: No-some context-free languages do not have a context-free intersection.
5. Every subset of a regular language is regular.

Answer: No-all languages (including non-regular ones) are subsets of Σ^{*}, which is certainly regular.
6. Every regular language is context-free.

Answer: Yes.
7. Some context-free languages are not regular.

Answer: Yes.
8. Some context-free languages are regular.

Answer: Yes.
9. Every non-deterministic finite automaton has an equivalent deterministic finite automaton.

Answer: Yes-the construction is algorithmic.
10. Some non-deterministic push-down automata have equivalent regular expressions.

Answer: Yes-some context-free languages are regular.
11. Some finite automata have equivalent regular grammars.

Answer: Yes-in fact all of them do.
12. Every finite automaton has an equivalent regular grammar.

Answer: Yes.
13. Every regular grammar has an equivalent regular expression.

Answer: Yes-the construction is algorithmic.
14. Every context-free grammar has an equivalent non-deterministic finite automaton.

Answer: No-some context-free languages are not regular.
15. Every regular expression has an equivalent deterministic finite automaton.

Answer: Yes-the construction is algorithmic.
16. Every non-deterministic push-down automaton has an equivalent regular grammar.

Answer: No-some context-free languages are not regular.
17. Every subset of a context-free language is context-free.

Answer: No - all languages (including those that are not context-free) are subsets of Σ^{*}, which is certainly regular, and thereby context-free.
18. The intersection of any regular language and any context-free language is context-free.

Answer: Yes.
19. The intersection of any regular language and any context-free language is regular.

Answer: No-but it is context-free.
20. The union of any regular language and any context-free language is regular.

Answer: No-but it is context-free.
21. Every context-free language contains a regular subset.

Answer: Yes-all languages contain \varnothing, which is certainly regular.
22. The complement of every context-free language is context-free.

Answer: No-some context-free languages do not have a context-free complement.
23. The complement of every regular language is context-free.

Answer: Yes - in fact it is regular.
24. The complement of every regular language is regular.

Answer: Yes.
25. Every recursively enumerable language is accepted by final state by some Turing machine.

Answer: Yes-by definition.
26. Some recursively enumerable languages are not accepted by halting by any Turing machine.

Answer: No-by definition.
27. Every recursive language is recursively enumerable.

Answer: Yes-by definition.

