CS320: Problems and Solutions for Day 9, Winter 2023

Problem 1 Let *L* be a language over alphabet $\Sigma = \{a, b, c, d, e\}$, defined as follows:

$$L = \{a^{m+1}b^{2n}c^{k+2}d^{3\ell}e^{j+3} \mid n = 2m, \ell = k+j\}$$

where $m, n, k, \ell, j \ge 0$.

(a) Write a complete formal definition of a context-free grammar G that generates language L. If such grammar does not exist, prove it.

Answer: The template for strings of L is:

$$a^{m+1}b^{4m}c^{k+2}d^{3k}d^{3j}e^{j+3}$$
, where $m, k, j \ge 0$

whence the grammar: $G = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b, c, d, e\}, V = \{S, A, B, D\}$, and P is:

$$S \rightarrow ABD$$

$$A \rightarrow aAbbbb \mid a$$

$$B \rightarrow cBddd \mid cc$$

$$D \rightarrow dddDe \mid eee$$

(b) Let S be a class of languages over alphabet $\{a, b, c, d, e\}$, defined as follows:

Language L is a member of S if and only if L is generated by some context-free grammar, but there does not exist a pushdown automaton that accepts L.

What is the cardinality of S? Explain your answer briefly.

Answer:

$$|\mathcal{S}| = 0$$
, since $\mathcal{S} = \emptyset$

Class S is empty, since every language generated by some context-free grammar is also accepted by some pushdown automaton. In fact, this pushdown automaton is obtained by an algorithmic conversion of the original context-free grammar.

Problem 2 Let *L* be the language accepted by the pushdown automaton:

$$M = (Q, \Sigma, \Gamma, \delta, q, F)$$

where:

$$Q = \{q, r, s, t\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A\}$$

$$F = \{t\}$$

and the transition function δ is defined as follows:

$$\begin{array}{l} [q, a, \lambda, r, A] \\ [r, a, \lambda, q, \lambda] \\ [t, b, \lambda, s, A] \\ [s, b, \lambda, t, \lambda] \\ [q, \lambda, \lambda, t, \lambda] \end{array}$$

(Recall that M is defined so as to accept by final state and empty stack.)

Write a regular expression that defines L. If such regular expression does not exist, prove it. Answer: **Problem 3** Let L_1 be the language accepted by the pushdown automaton:

$$M = (Q, \Sigma, \Gamma, \delta, q, F)$$

where:

$$\begin{aligned} Q &= \{q, r\} \\ \Sigma &= \{a, b, c\} \\ \Gamma &= \{A\} \\ F &= \{r\} \end{aligned}$$

and the transition function δ is defined as follows:

$$\begin{bmatrix} q, a, \lambda, q, A \\ [q, c, \lambda, r, \lambda] \\ [r, b, A, r, \lambda] \end{bmatrix}$$

(Recall that M is defined so as to accept by final state and empty stack.)

(a) Write a complete formal definition of a context-free grammar G that generates L_1 . If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b, c\}, V = \{S\}$, and the rule set P is:

$$S \to aSb \mid c$$

(b) Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: An arbitrary string x over Σ .

QUESTION: Does x belong to L_1 ?

Explain your answer. If such algorithm does not exist, prove it.

Answer: This algorithm simulates the operation of the pushdown automaton M defined in part (a). Since M accepts when x belongs to L_1 and rejects when x does not belong to L_1 , our algorithm says yes when M accepts, and says no when M rejects.

Problem 4 Let *L* be the language accepted by the pushdown automaton:

$$M = (Q, \Sigma, \Gamma, \delta, q, F)$$

where:

$$Q = \{q, r, s, t, v\}$$

$$\Sigma = \{a, b, c, d\}$$

$$\Gamma = \{A, B, D\}$$

$$F = \{v\}$$

and the transition function δ is defined as follows:

```
 \begin{array}{l} [q, a, \lambda, q, A] \\ [r, b, A, r, \lambda] \\ [s, c, \lambda, s, B] \\ [t, a, B, t, \lambda] \\ [v, d, \lambda, v, D] \\ [v, d, D, v, \lambda] \\ [q, \lambda, \lambda, r, \lambda] \\ [r, \lambda, \lambda, s, \lambda] \\ [s, \lambda, \lambda, t, \lambda] \\ [t, \lambda, \lambda, v, \lambda] \end{array}
```

(Recall that M is defined so as to accept by final state and empty stack.)

(a) Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, prove it.

Answer: The template for words accepted by M is:

 $a^n b^n c^m a^m (dd)^k$

whence the grammar: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c, d\}$, $V = \{S, A, B, D\}$, and P comprises:

$$\begin{array}{l} S \rightarrow ABD \\ A \rightarrow aAb \mid \lambda \\ B \rightarrow cBa \mid \lambda \\ D \rightarrow DD \mid \lambda \mid dd \end{array}$$

(b) Let \mathcal{T} be a set of strings over alphabet $\{a, b, c\}$, defined as follows:

String w is a member of \mathcal{T} if and only if w is accepted by the pushdown automaton M and the length of w is greater than 6.

What is the cardinality of \mathcal{T} ? Explain your answer briefly. Answer:

 $|\mathcal{T}| = \aleph_0$

Set \mathcal{T} is infinite and countable. To see that \mathcal{T} is infinite, observe that it contains all the strings of the infinite language L, except possibly only finitely many of them whose length does not exceed 6. (Question: Which?) To see that \mathcal{T} is countable, recall that the entire set of strings $\{a, b, c\}^*$ is countable.

Problem 5 Let L be the language accepted by the pushdown automaton: $M = (Q, \Sigma, \Gamma, \delta, q, F)$, where

$$Q = \{q, r\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{A, Z\}$$

$$F = \{q\}$$

and the transition function δ is defined as follows:

$$\begin{array}{l} [q,\lambda,\lambda,r,Z] \\ [q,\lambda,Z,q,\lambda] \\ [r,a,Z,r,ZA] \\ [r,c,A,r,\lambda] \\ [r,b,Z,q,\lambda] \end{array}$$

(Recall that M is defined so as to accept by final state and empty stack. Furthermore, if an arbitrary stack string, say $X_1 \ldots X_n \in \Gamma^*$, where $n \ge 2$, is pushed on the stack by an individual transition, then the left-most symbol X_1 is pushed first, while the right-most symbol X_n is pushed last.

(a) Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Answer:

 $((ac)^*b)^*$

(b) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.

Answer: $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c\}, V = \{S, A\}$, and the production set P is:

$$S \to SS \mid \lambda \mid Ab$$
$$A \to acA \mid \lambda$$

Problem 6 Let *L* be the language accepted by the pushdown automaton: $M = (Q, \Sigma, \Gamma, \delta, q, F)$, where $Q = \{q, r\}$, $\Sigma = \{a, b, c, d\}$, $\Gamma = \{A, B\}$, $F = \{r\}$, and the transition function δ is defined as follows:

$$\begin{array}{l} [q, a, \lambda, q, A] \\ [q, b, \lambda, q, B] \\ [q, c, \lambda, q, A] \\ [q, \lambda, \lambda, r, \lambda] \\ [r, d, A, r, \lambda] \\ [r, b, B, r, \lambda] \end{array}$$

(Recall that M is defined so as to accept by final state and empty stack.)

(a) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.

Answer: $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c, d\}$, $V = \{S\}$, and P is:

$$S \rightarrow aSa \mid cSa \mid bSb \mid X$$

(b) Write a complete formal definition of a context-free grammar G_1 that generates L^* . If such a grammar does not exist, prove it.

Answer: $G = (V, \Sigma, P, T)$, where $\Sigma = \{a, b, c, d\}$, $V = \{S, T\}$, and P is: $T \rightarrow TT$

$$\begin{array}{l} T \rightarrow TT \mid \lambda \mid S \\ S \rightarrow aSd \mid cSd \mid bSb \mid \lambda \end{array}$$

Problem 7 Let *L* be the language accepted by the pushdown automaton: $M = (Q, \Sigma, \Gamma, \delta, q, F)$, where $Q = \{q, r, s\}, \Sigma = \{a, b, d\}, \Gamma = \{A\}, F = \{s\}$, and the transition function δ is defined as follows:

$$\begin{array}{l} [q, a, \lambda, q, A] \\ [r, d, \lambda, r, A] \\ [s, b, A, s, \lambda] \\ [q, \lambda, \lambda, r, \lambda] \\ [r, \lambda, \lambda, s, \lambda] \end{array}$$

(Recall that M is defined so as to accept by final state and empty stack.)

(a) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.

Answer: Note that:

$$L = \{a^m d^n b^{m+n} \mid m, n \ge 0\}$$

whence the grammar: $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, d\}, V = \{S, A\}$, and P is:

$$S \to aSb \mid A \\ A \to dAb \mid \lambda$$

(b) Write a complete formal definition of a *regular* context-free grammar G_1 that generates L. If such a grammar does not exist, prove it.

Answer: The language:

$$L = \{a^m d^n b^{m+n} \mid m, n \ge 0\}$$

is not regular, and there does not exist a regular grammar to generate it.

To prove this, assume the opposite, that L is regular. Let η be the constant as in the Pumping Lemma for L. Let $m > \eta$; then the word:

$$a^m b^m$$

belongs to L, as it is obtained from the general template by setting n = 0.

In any "pumping" decomposition such that:

$$a^m b^m = uvx$$

we have:

$$|uv| \le \eta < m$$

Hence, the "pumping" substring v consists entirely of a's, say $v = a^{\ell}$. Recall that $\ell > 0$, since the "pumping" substring cannot be empty. By the pumping, every word of the form $uv^i x$, $i \ge 0$, belongs to L. However, such a word is of the form:

$$w_1 = a^{m+(i-1)\ell} b^m$$

Observe that the total number of a's and d's in this word is equal to $m + (i-1)\ell$. Since $m + (i-1)\ell > m$ whenever i > 1, word w_1 has more a's and d's than is appropriate for its number of b's. Hence, $w_1 \notin L$, which is a contradiction.

Problem 8 Let *L* be the language accepted by the pushdown automaton:

$$M = (Q, \Sigma, \Gamma, \delta, q, F)$$

where:

$$Q = \{q, r, s\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{A, B\}$$

$$F = \{s\}$$

and the transition function δ is defined as follows:

$$\begin{array}{l} [q,a,\lambda,q,\lambda] \\ [q,b,\lambda,q,B] \\ [q,c,\lambda,q,\lambda] \\ [q,\lambda,\lambda,r,\lambda] \\ [r,\lambda,B,s,\lambda] \\ [s,\lambda,B,s,\lambda] \end{array}$$

(Recall that M is defined so as to accept by final state and empty stack.)

Write a complete formal definition of a context-free grammar that generates \overline{L} (the complement of L). If such a grammar does not exist, prove it.

Answer: Observe that *L* contains exactly those strings over $\{a, b, c\}$ that contain at least one occurrence of the letter *b*. Hence, its complement is represented by the regular expression $(a \cup c)^*$, which corresponds to the grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c\}$ is the set of terminals; $V = \{S\}$ is the set of variables; *S* is the start symbol, and the production set *P* is:

$$S \to aS \mid cS \mid \lambda$$