CS320: Problems and Solutions for Day 9, Winter 2023

Problem 1 Let L be a language over alphabet $\Sigma=\{a, b, c, d, e\}$, defined as follows:

$$
L=\left\{a^{m+1} b^{2 n} c^{k+2} d^{3 \ell} e^{j+3} \mid n=2 m, \ell=k+j\right\}
$$

where $m, n, k, \ell, j \geq 0$.
(a) Write a complete formal definition of a context-free grammar G that generates language L. If such grammar does not exist, prove it.
Answer: The template for strings of L is:

$$
a^{m+1} b^{4 m} c^{k+2} d^{3 k} d^{3 j} e^{j+3}, \text { where } m, k, j \geq 0
$$

whence the grammar: $G=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b, c, d, e\}, V=\{S, A, B, D\}$, and P is:

$$
\begin{aligned}
& S \rightarrow A B D \\
& A \rightarrow a A b b b b \mid a \\
& B \rightarrow c B d d d \mid c c \\
& D \rightarrow d d d D e \mid e e e
\end{aligned}
$$

(b) Let \mathcal{S} be a class of languages over alphabet $\{a, b, c, d, e\}$, defined as follows:

Language L is a member of \mathcal{S} if and only if L is generated by some context-free grammar, but there does not exist a pushdown automaton that accepts L.

What is the cardinality of \mathcal{S} ? Explain your answer briefly.
Answer:

$$
|\mathcal{S}|=0, \text { since } \mathcal{S}=\varnothing
$$

Class \mathcal{S} is empty, since every language generated by some context-free grammar is also accepted by some pushdown automaton. In fact, this pushdown automaton is obtained by an algorithmic conversion of the original context-free grammar.

Problem 2 Let L be the language accepted by the pushdown automaton:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

where:

$$
\begin{aligned}
& Q=\{q, r, s, t\} \\
& \Sigma=\{a, b\} \\
& \Gamma=\{A\} \\
& F=\{t\}
\end{aligned}
$$

and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, r, A]} \\
& {[r, a, \lambda, q, \lambda]} \\
& {[t, b, \lambda, s, A]} \\
& {[s, b, \lambda, t, \lambda]} \\
& {[q, \lambda, \lambda, t, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
Write a regular expression that defines L. If such regular expression does not exist, prove it.
Answer:

Problem 3 Let L_{1} be the language accepted by the pushdown automaton:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

where:

$$
\begin{aligned}
& Q=\{q, r\} \\
& \Sigma=\{a, b, c\} \\
& \Gamma=\{A\} \\
& F=\{r\}
\end{aligned}
$$

and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, q, A]} \\
& {[q, c, \lambda, r, \lambda]} \\
& {[r, b, A, r, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
(a) Write a complete formal definition of a context-free grammar G that generates L_{1}. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b, c\}, V=\{S\}$, and the rule set P is:

$$
S \rightarrow a S b \mid c
$$

(b) Describe the algorithm that should be employed by a program that solves the following problem:

Input: An arbitrary string x over Σ.
Question: Does x belong to L_{1} ?
Explain your answer. If such algorithm does not exist, prove it.
Answer: This algorithm simulates the operation of the pushdown automaton M defined in part (a). Since M accepts when x belongs to L_{1} and rejects when x does not belong to L_{1}, our algorithm says yes when M accepts, and says no when M rejects.

Problem 4 Let L be the language accepted by the pushdown automaton:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

where:

$$
\begin{aligned}
& Q=\{q, r, s, t, v\} \\
& \Sigma=\{a, b, c, d\} \\
& \Gamma=\{A, B, D\} \\
& F=\{v\}
\end{aligned}
$$

and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, q, A]} \\
& {[r, b, A, r, \lambda]} \\
& {[s, c, \lambda, s, B]} \\
& {[t, a, B, t, \lambda]} \\
& {[v, d, \lambda, v, D]} \\
& {[v, d, D, v, \lambda]} \\
& {[q, \lambda, \lambda, r, \lambda]} \\
& {[r, \lambda, \lambda, s, \lambda]} \\
& {[s, \lambda, \lambda, t, \lambda]} \\
& {[t, \lambda, \lambda, v, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
(a) Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, prove it.
Answer: The template for words accepted by M is:

$$
a^{n} b^{n} c^{m} a^{m}(d d)^{k}
$$

whence the grammar: $G=\{V, \Sigma, P, S\}$, where
$\Sigma=\{a, b, c, d\}, V=\{S, A, B, D\}$, and P comprises:

$$
\begin{aligned}
& S \rightarrow A B D \\
& A \rightarrow a A b \mid \lambda \\
& B \rightarrow c B a \mid \lambda \\
& D \rightarrow D D|\lambda| d d
\end{aligned}
$$

(b) Let \mathcal{T} be a set of strings over alphabet $\{a, b, c\}$, defined as follows:

String w is a member of \mathcal{T} if and only if w is accepted by the pushdown automaton M and the length of w is greater than 6 .

What is the cardinality of \mathcal{T} ? Explain your answer briefly.

Answer:

$$
|\mathcal{T}|=\aleph_{0}
$$

Set \mathcal{T} is infinite and countable. To see that \mathcal{T} is infinite, observe that it contains all the strings of the infinite language L, except possibly only finitely many of them whose length does not exceed 6 . (Question: Which?) To see that \mathcal{T} is countable, recall that the entire set of strings $\{a, b, c\}^{*}$ is countable.

Problem 5 Let L be the language accepted by the pushdown automaton: $M=(Q, \Sigma, \Gamma, \delta, q, F)$, where

$$
\begin{aligned}
& Q=\{q, r\} \\
& \Sigma=\{a, b, c\} \\
& \Gamma=\{A, Z\} \\
& F=\{q\}
\end{aligned}
$$

and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, \lambda, \lambda, r, Z]} \\
& {[q, \lambda, Z, q, \lambda]} \\
& {[r, a, Z, r, Z A]} \\
& {[r, c, A, r, \lambda]} \\
& {[r, b, Z, q, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack. Furthermore, if an arbitrary stack string, say $X_{1} \ldots X_{n} \in \Gamma^{*}$, where $n \geq 2$, is pushed on the stack by an individual transition, then the left-most symbol X_{1} is pushed first, while the right-most symbol X_{n} is pushed last.
(a) Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Answer:

$$
\left((a c)^{*} b\right)^{*}
$$

(b) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.
Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b, c\}, V=\{S, A\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow S S|\lambda| A b \\
& A \rightarrow a c A \mid \lambda
\end{aligned}
$$

Problem 6 Let L be the language accepted by the pushdown automaton: $M=(Q, \Sigma, \Gamma, \delta, q, F)$, where $Q=\{q, r\}$, $\Sigma=\{a, b, c, d\}, \Gamma=\{A, B\}, F=\{r\}$, and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, q, A]} \\
& {[q, b, \lambda, q, B]} \\
& {[q, c, \lambda, q, A]} \\
& {[q, \lambda, \lambda, r, \lambda]} \\
& {[r, d, A, r, \lambda]} \\
& {[r, b, B, r, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
(a) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.
Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b, c, d\}$,
$V=\{S\}$, and P is:

$$
S \rightarrow a S d|c S d| b S b \mid \lambda
$$

(b) Write a complete formal definition of a context-free grammar G_{1} that generates L^{*}. If such a grammar does not exist, prove it.
Answer: $G=(V, \Sigma, P, T)$, where $\Sigma=\{a, b, c, d\}$, $V=\{S, T\}$, and P is:

$$
\begin{aligned}
& T \rightarrow T T|\lambda| S \\
& S \rightarrow a S d|c S d| b S b \mid \lambda
\end{aligned}
$$

Problem 7 Let L be the language accepted by the pushdown automaton: $M=(Q, \Sigma, \Gamma, \delta, q, F)$, where $Q=$ $\{q, r, s\}, \Sigma=\{a, b, d\}, \Gamma=\{A\}, F=\{s\}$, and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, q, A]} \\
& {[r, d, \lambda, r, A]} \\
& {[s, b, A, s, \lambda]} \\
& {[q, \lambda, \lambda, r, \lambda]} \\
& {[r, \lambda, \lambda, s, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
(a) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, prove it.
Answer: Note that:

$$
L=\left\{a^{m} d^{n} b^{m+n} \mid m, n \geq 0\right\}
$$

whence the grammar: $G=(V, \Sigma, P, S)$, where
$\Sigma=\{a, b, d\}, V=\{S, A\}$, and P is:

$$
\begin{aligned}
& S \rightarrow a S b \mid A \\
& A \rightarrow d A b \mid \lambda
\end{aligned}
$$

(b) Write a complete formal definition of a regular context-free grammar G_{1} that generates L. If such a grammar does not exist, prove it.
Answer: The language:

$$
L=\left\{a^{m} d^{n} b^{m+n} \mid m, n \geq 0\right\}
$$

is not regular, and there does not exist a regular grammar to generate it.
To prove this, assume the opposite, that L is regular. Let η be the constant as in the Pumping Lemma for L. Let $m>\eta$; then the word:

$$
a^{m} b^{m}
$$

belongs to L, as it is obtained from the general template by setting $n=0$.
In any "pumping" decomposition such that:

$$
a^{m} b^{m}=u v x
$$

we have:

$$
|u v| \leq \eta<m
$$

Hence, the "pumping" substring v consists entirely of a 's, say $v=a^{\ell}$. Recall that $\ell>0$, since the "pumping" substring cannot be empty. By the pumping, every word of the form $u v^{i} x, i \geq 0$, belongs to L. However, such a word is of the form:

$$
w_{1}=a^{m+(i-1) \ell} b^{m}
$$

Observe that the total number of a 's and d 's in this word is equal to $m+(i-1) \ell$. Since $m+(i-1) \ell>m$ whenever $i>1$, word w_{1} has more a 's and d's than is appropriate for its number of b 's. Hence, $w_{1} \notin L$, which is a contradiction.

Problem 8 Let L be the language accepted by the pushdown automaton:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

where:

$$
\begin{aligned}
& Q=\{q, r, s\} \\
& \Sigma=\{a, b, c\} \\
& \Gamma=\{A, B\} \\
& F=\{s\}
\end{aligned}
$$

and the transition function δ is defined as follows:

$$
\begin{aligned}
& {[q, a, \lambda, q, \lambda]} \\
& {[q, b, \lambda, q, B]} \\
& {[q, c, \lambda, q, \lambda]} \\
& {[q, \lambda, \lambda, r, \lambda]} \\
& {[r, \lambda, B, s, \lambda]} \\
& {[s, \lambda, B, s, \lambda]}
\end{aligned}
$$

(Recall that M is defined so as to accept by final state and empty stack.)
Write a complete formal definition of a context-free grammar that generates \bar{L} (the complement of L). If such a grammar does not exist, prove it.
Answer: Observe that L contains exactly those strings over $\{a, b, c\}$ that contain at least one occurrence of the letter b. Hence, its complement is represented by the regular expression $(\boldsymbol{a} \cup \boldsymbol{c})^{*}$, which corresponds to the grammar $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b, c\}$ is the set of terminals; $V=\{S\}$ is the set of variables; S is the start symbol, and the production set P is:

$$
S \rightarrow a S|c S| \lambda
$$

