CS320: Problems and Solutions for Days 1-8, Winter 2023

Problem 1 Let:

$$
\begin{gathered}
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \\
V=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}
\end{gathered}
$$

and let:

$$
N=\{0,1, \ldots\}
$$

be the set of natural numbers. State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)
Answer:

1. $\Sigma \times V$ has $k m$ elements.
2. V^{*} is infinite and countable.
3. $(\Sigma \times V)^{*}$ is infinite and countable.
4. $\mathcal{P}(\Sigma)$ has 2^{k} elements.
5. $\mathcal{P}\left(V^{*}\right)$ is infinite and uncountable.
6. set of total functions from V to Σ kas k^{m} elements.
7. set of total functions from N to V is infinite and uncountable.
8. set of all context-free grammars of the form (V, Σ, P, S) is infinite and countable.
9. set of all regular expressions over Σ is infinite and countable.
10. language defined by the regular expression $\left(a_{1} \cup a_{2}\right)\left(a_{2} a_{3}\right)^{*}$ is infinite and countable.
11. $N \times \Sigma$ is infinite and countable.
12. set of all languages over Σ is infinite and uncountable.

Problem 2 Let:

$$
\begin{gathered}
\Sigma=\{a, b, c, d, e\} \\
V=\{A, B, D, E, F, H, J, K\}
\end{gathered}
$$

State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)
Answer:

1. $\Sigma \cup V$ has $5+8=13$ elements.
2. $\Sigma^{*} \cup V^{*}$ is infinite and countable.
3. $\Sigma \cap V=\emptyset$, hence it has 0 elements.
4. $(\Sigma \cap V)^{*}=\emptyset^{*}=\{\lambda\}$, hence it has 1 element.
5. $\mathcal{P}(V)$ has $2^{8}=256$ elements.
6. $\mathcal{P}\left(\Sigma^{*}\right)$ is infinite and uncountable.
7. set of all regular expressions over Σ is infinite and countable.
8. set of all languages over Σ is infinite and uncountable.
9. set of total functions from Σ to V has 8^{5} elements.
10. set of all context-free grammars of the form (V, Σ, P, S) is infinite and countable.
11. $V \times \Sigma$ has $8 \times 5=40$ elements.
12. set of all languages over V is infinite and uncountable.

Problem 3 For each of the following claims, circle the word "yes" that follows the claim if the claim is correct, and circle the word "no" that follows the claim if the claim is not correct.

1. The class of context-free languages is closed under concatenation. yes
2. The Kleene star of any regular language is regular. yes
3. The Kleene star of any regular language is context-free. yes
4. The union of any two context-free languages is context-free. yes
5. Every finite language is regular. yes
6. There exists an algorithm to convert any regular expression into an equivalent finite automaton. yes
7. There exists an algorithm to convert any regular expression into an equivalent context-free grammar. yes
8. Every deterministic finite automaton is equivalent to some non-deterministic finite automaton. yes
9. Every non-deterministic finite automaton is equivalent to some deterministic finite automaton. yes
10. Every context-free grammar is equivalent to some regular expression. no
11. Set of strings of the form $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$ is regular. no
12. Set of strings of the form $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$ is context-free. no
13. Set of strings of the form $\left\{a^{k} b^{k} \mid k \geq 0\right\}$ is regular. no
14. Set of strings of the form $\left\{a^{k} b^{k} \mid k \geq 0\right\}$ is context-free. yes
15. Every language has a finite description. no
16. Every finite language has a finite description. yes
17. Set $\{a, b\}^{*}$ is regular. yes
18. Every subset of $\{a, b\}^{*}$ is regular. no
19. Every subset of $\{a, b\}^{*}$ is context-free. no

Problem 4 For each of the following claims, circle the word "yes" that follows the claim if the claim is correct, and circle the word "no" that follows the claim if the claim is not correct.

1. The concatenation of any two regular languages is context-free. yes
2. The Kleene star of any regular language is context-free. yes
3. Every subset of a regular language is regular.
4. Some context-free languages are not regular. yes
5. Some finite languages are not regular. no
6. Some regular languages are not finite. yes
7. The union of any two regular languages is regular. yes
8. Language $\left\{a^{n} b^{m} c^{k} \mid k=m+n, k, m, n \geq 0\right\}$ is context-free. yes
9. Language $\left\{a^{n} b^{m} c^{k} \mid k, m, n \geq 0\right\}$ is not regular. no
10. Language $\left\{a^{n} b^{m} c^{k} d^{\ell} \mid n=k \wedge m=\ell, k, m, n, \ell \geq 0\right\}$
is context-free. no
11. Language $\left\{a^{n} b^{m} c^{k} d^{\ell} \mid n=k \vee m=\ell, k, m, n, \ell \geq 0\right\}$ is context-free. yes
12. Every regular language has a context-free subset. yes
13. Every infinite context-free language has an infinite regular superset. yes
14. Language $\left\{a^{n} b^{m} c^{k} d^{\ell} \mid n=k \wedge m=\ell, k, m, n, \ell \geq 0\right\}$ has a proper subset which is context-free and infinite. yes
15. Every infinite language has a finite description. no
16. Every finite language is generated by some context-free grammar. yes
17. Some infinite languages cannot be described by a regular expression. yes
18. Set $\{a, b\}^{*}$ has a proper subset which is infinite and not context-free. yes
19. The intersection of $\left\{a^{n} b^{m} c^{m} \mid m, n \geq 0\right\}$ and $\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$ is context-free. no
20. The intersection of $\left\{a^{n} b^{m} c^{m} \mid m, n \geq 0\right\}$ and $\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$ has a context-free complement. yes

Problem 5 Fill the empty box at the end of each of the numbered claims with one of these signs:

$$
-, \sqrt{ }, ?
$$

so that the meaning of the signs is as follows:

- - means that the preceding claim is always false;
- $\sqrt{ }$ means that the preceding claim is always true;
- ? means that the preceding claim may be true but may be false, depending on the values of the variable(s) appearing in the claim.

Problem assumptions: L_{1} is an arbitrary regular language; L_{2} is an arbitrary context-free language; e_{1} is a regular expression that represents $L_{1} ; G_{2}$ is a context-free grammar that generates L_{2}.

Claims:

1. L_{1} is context-free.
2. L_{2} is regular. ?
3. L_{2}^{*} is context-free. $\sqrt{ }$
4. L_{1} has a regular complement. $\sqrt{ }$
5. $L_{1} \cap L_{2}$ is regular. ?
6. $L_{1} \cap L_{2}$ is context-free.
7. L_{2} has a context-free complement.
8. $L_{1} L_{2}$ is context-free. \square
9. There exists an algorithm which on input e_{1} outputs a regular context-free grammar for L_{1}.
10. There exists an algorithm which on input G_{2} outputs a regular context-free grammar for L_{2}.
