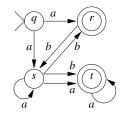
CS320: Problems and Solutions for Day 8, Winter 2023

Problem 1 Let M be the finite automaton represented by the state diagram on Figure 1, and let L be the language accepted by M.

Write a complete formal definition or a state-transition graph of a deterministic finite automaton M' that accepts L and show your work. If such automaton does not exist, prove it.



Answer: There are no λ -transitions; therefore, the λ -closure of every state is the singleton containing that state. Hence, $q' = \{q\}$. Furthermore, the transition function δ of M and the input transition function t of M' are identical:

$\begin{array}{c} t = \delta \\ \hline q \\ r \\ s \\ t \end{array}$	$\begin{array}{c} a \\ \{r,s\} \\ \emptyset \\ \{s,t\} \\ \{t\} \end{array}$	$\begin{array}{c} b\\ \hline \varnothing\\ \{s\}\\ \{r,t\}\\ \varnothing \end{array}$	
$\{r,s,t\}$	$\{s, t\} \\ \{s, t\} \\ \{t\} \\ \{t\} \\ \{t\}$	$\begin{array}{c} b \\ \hline \emptyset \\ \{r, s, t\} \\ \{r, t\} \\ \{r, s, t\} \\ \{s\} \\ \emptyset \\ \{r, t\} \\ \emptyset \end{array}$	
q a rs b rs b b			

Figure 2:

The set of states: $Q' = \{\{q\}, \{r, s\}, \{s, t\}, \{r, s, t\}, \{r, t\}, \{t\}, \{s\}, \emptyset\}.$ The set of final states: $F' = \{\{r, s\}, \{s, t\}, \{r, s, t\}, \{r, t\}, \{t\}\}.$ The state diagram of M' is given on Figure 2.

Problem 2 Let M be the finite automaton represented by the state diagram on Figure 3, and let L be the language accepted by M.

The transition function δ' :

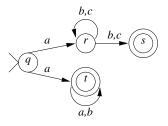


Figure 3:

(a) Is the finite automaton M deterministic? Justify briefly your answer.

Answer: No—for example, there are two states, r and s, reachable from state r on input symbol b (or c), etc. (b) If M is not deterministic, construct a deterministic finite automaton M' that accepts L and show your work. If such an automaton M' does not exist, explain why.

Answer: Let $M' = (Q', \{a, b, c\}, \delta', q', F')$, where $Q' \in \mathcal{P}(Q)$.

There are no ϵ -transitions; therefore, the ϵ -closure of every state is the singleton containing that state. Hence, $q' = \{q\}$. The transition function δ :

	δ	a	b	c
	\overline{q}	$\{r,t\}$	Ø	Ø
	r	Ø	$\{r,s\}$	$\{r,s\}$
	s	Ø	Ø	Ø
	$t \mid$	$\{t\}$	$\{t\}$	Ø
The transition function δ' :				
	δ'	a	b	c
	$\{q\}$	$\{r,t\}$	• Ø	Ø
	$\{r,t\}$	$\{t\}$	$\{r, s,$	t { r,s }
	$\{t\}$	$\{t\}$	$\{t\}$	Ø
	$\{r, s, t\}$	$\{t\}$	$\{r, s,$	$\begin{array}{ccc} t \} & \{r,s\} \\ \} & \{r,s\} \\ & \emptyset \end{array}$
	$\{r,s\}$	Ø	$\{r, s$	$\{r,s\}$
	Ø	Ø	Ø	Ø
The set of states:				

The set of states: $Q' = \{\{q\}, \{r, t\}, \{t\}, \{r, s, t\}, \{r, s\}, \emptyset\}.$ The set of final states: $F' = \{\{t\}, \{r, t\}, \{r, s, t\}, \{r, s\}\}.$

The state diagram of M' is given on Figure 4.

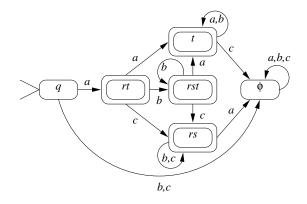


Figure 4:

Problem 3 Let *L* be the language defined by the regular expression

$$b(a\cup b^*((c^*\cup (cb)^*)ac)^*)b$$

(a) Construct a finite automaton M that accepts L. If such an automaton M does not exist, explain why.

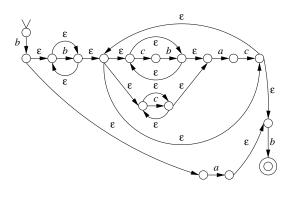


Figure 5:

Answer: The state diagram of M is given on Figure 5.

(b) If you constructed an automaton M in your answer to part (a), is M deterministic? Justify briefly your answer. Answer: No—for example, M has ϵ transitions, etc.

Problem 4 Let M be the finite automaton represented by the state diagram on Figure 6, and let L be the language accepted by M.

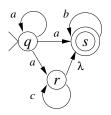


Figure 6:

Construct a state-transition graph of a deterministic finite automaton M_1 that accepts L, and show your work. If such automaton does not exist, prove it.

Answer:

Let $M_1 = (Q', \{a, b, c\}, \delta', q', F')$, where $Q' \in \mathcal{P}(Q)$. Transition function of M:

	$\delta \mid \epsilon$	a b	c	λ
	$q \mid \{q, z\}$	$s,r\} \emptyset$	Ø	Ø
	s ($\mathcal{O} = \{s\}$	Ø	Ø
	$r \mid 0$		$\{r\}$	$\{s\}$
λ -closure:				
		q C(q)		
		$q = \{q\}$		
		$s \left[\{s\} \right]$		
		$r \mid \{r, s\}$	3}	
The initial state: $q' = \{q\}.$				
The transition function δ' :				
	δ'	a	b	c
	$\{q\}$	$ \begin{array}{c} \{q,s,r\} \\ \{q,s,r\} \\ \emptyset \\ \emptyset \\ \emptyset \\ \emptyset \\ \end{array} $	Ø	Ø
	$\{q,s,r\}$	$ \{q, s, r\}$	$\{s\}$	$\{s,r\}$
	$\{s\}$	Ø	$\{s\}$	Ø
	$\{s,r\}$	Ø	$\{s\}$	$\{s,r\}$
	Ø	Ø	Ø	Ø
The set of states:				
$Q' = \{\{q\}, \{s\}, \{s, r\}, \{q, s, r\}, \emptyset\}.$				

 $Q' = \{\{q\}, \{s\}, \{s, r\}, \{q, s, r\}, \emptyset\}.$ The set of final states: $F' = \{\{s\}, \{s, r\}, \{q, s, r\}\}.$ The state diagram of M_1 is given on Figure 7.

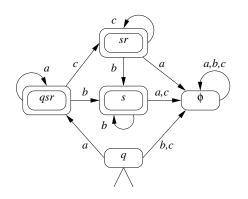


Figure 7:

Problem 5 Let *L* be the language accepted by the finite automaton $M = (Q, \Sigma, \delta, q, \{f\})$, where $\Sigma = \{a\}$, $Q = \{p, q, r, s, t, v, w, x, y, z, f\}$, and δ is given by the following table:

	a	λ
p	$\{z\}$	Ø
q	$\{t,r\}$	$\{s\}$
r	Ø	$\{q,t\}$
s	Ø	$\{w\}$
t	$\{z, y\}$	$\{p, w\}$
v	$\{x\}$	$\{r\}$
w	$\{y\}$	Ø
x	$\{p\}$	$\{v\}$
y	$\{p\}$	$\{f\}$
z	Ø	$\{v\}$
f	Ø	Ø

Compute the λ -closure of state v. Answer:

$$\mathcal{C}(v) = \{v, r, q, t, s, p, w\}$$

Problem 6 Let M be the finite automaton represented by the state diagram on Figure 8, and let L be the language accepted by M.

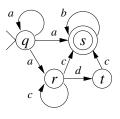


Figure 8:

Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, prove it.

Answer: Apply the algorithm to convert M into a regular context-free grammar: $G = \{V, \Sigma, P, q\}$, where $\Sigma = \{a, b, c\}, V = \{q, s, r, t\}$, and the production set P is:

$$\begin{array}{l} q \rightarrow aq \mid as \mid ar \\ s \rightarrow bs \mid \lambda \\ r \rightarrow cr \mid cs \mid dt \\ t \rightarrow cs \end{array}$$