CS320: Problems and Solutions for Day 6, Winter 2023

Problem 1 Let L_1 be the set of strings over alphabet $\{a, b, c\}$ in which the total number of b's and c's is one. Let L_2 be the set of strings over alphabet $\{a, b, c\}$ that contain an even number of b's.

(a) Draw a state-transition graph of a finite automaton M_1 that accepts $L_1 \cup L_2$. If such automaton does not exist, prove it.

Answer: See Figure 1.

Figure 1:

(b) Draw a state-transition graph of a finite automaton M_2 that accepts $(L_1L_2)^*$. If such automaton does not exist, prove it.

Answer: See Figure 2.

Figure 2:

(c) Is $L_1 \cap L_2$ a context-free language? Explain your answer.

Answer: Yes— $L_1 \cap L_2$ is regular because the intersection of any two regular languages is regular. Every regular language is context-free.

Problem 2 Let L_1 be the set of strings over alphabet $\{a, b, c\}$ that contain at least one b. Let L_2 be the set of strings over alphabet $\{a, b, c\}$ whose length gives remainder 2 when divided by 3.

(a) Draw a state-transition graph of a finite automaton that accepts L_1 . If such automaton does not exist, prove it. Answer: See Figure 3.

Figure 3:

Figure 4:

Answer: See Figure 4.

(c) Draw a state-transition graph of a finite automaton that accepts $L_1 \cup L_2$. If such automaton does not exist, prove it.

Answer: See Figure 5.

Figure 5:

(d) Draw a state-transition graph of a finite automaton that accepts $L_1 \cap L_2$. If such automaton does not exist, prove it.

Answer: See Figure 6.

Figure 6:

Problem 3 Let L_1 be the set of all strings over alphabet $\{a, b\}$ whose first and last letters are equal. Let L_2 be the set of strings over alphabet $\{a, b\}$ that contain at least one b.

(a) Draw a state-transition graph of a finite automaton that accepts $L_1 \cup L_2$. If such automaton does not exist, prove it.

Answer: See Figure 7.

(b) Draw a state-transition graph of a finite automaton that accepts $L_1 \cap L_2$. If such automaton does not exist, prove it.

Answer: See Figure 8.

(c) Write a complete formal definition of a context-free grammar that generates L_1L_2 . If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b\}, V = \{S, L, R, A\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow LR \\ L \rightarrow aAa \mid bAb \mid a \mid b \\ R \rightarrow AbA \\ A \rightarrow AA \mid \lambda \mid a \mid b \end{array}$$

Figure 8:

$$(ca)^*(bd)^* \cup (aa)^*$$

(a) Construct a state-transition graph of a finite automaton that accepts L. If such an automaton does not exist, prove it.

Answer: See Figure 9.

Figure 9:

(b) Construct a state-transition graph of a finite automaton that accepts L^* . If such an automaton does not exist, prove it.

Answer: See Figure 10.

Figure 10: