CS320: Problems and Solutions for Day 6, Winter 2023

Problem 1 Let L_{1} be the set of strings over alphabet $\{a, b, c\}$ in which the total number of b 's and c 's is one. Let L_{2} be the set of strings over alphabet $\{a, b, c\}$ that contain an even number of b 's.
(a) Draw a state-transition graph of a finite automaton M_{1} that accepts $L_{1} \cup L_{2}$. If such automaton does not exist, prove it.
Answer: See Figure 1.

Figure 1:
(b) Draw a state-transition graph of a finite automaton M_{2} that accepts $\left(L_{1} L_{2}\right)^{*}$. If such automaton does not exist, prove it.
Answer: See Figure 2.

Figure 2:
(c) Is $L_{1} \cap L_{2}$ a context-free language? Explain your answer.

Answer: Yes- $L_{1} \cap L_{2}$ is regular because the intersection of any two regular languages is regular. Every regular language is context-free.

Problem 2 Let L_{1} be the set of strings over alphabet $\{a, b, c\}$ that contain at least one b. Let L_{2} be the set of strings over alphabet $\{a, b, c\}$ whose length gives remainder 2 when divided by 3 .
(a) Draw a state-transition graph of a finite automaton that accepts L_{1}. If such automaton does not exist, prove it.

Answer: See Figure 3.

Figure 3:
(b) Draw a state-transition graph of a finite automaton that accepts L_{2}. If such automaton does not exist, prove it.

Figure 4:

Answer: See Figure 4.

(c) Draw a state-transition graph of a finite automaton that accepts $L_{1} \cup L_{2}$. If such automaton does not exist, prove it.
Answer: See Figure 5.

Figure 5:
(d) Draw a state-transition graph of a finite automaton that accepts $L_{1} \cap L_{2}$. If such automaton does not exist, prove it.
Answer: See Figure 6.

Figure 6:

Problem 3 Let L_{1} be the set of all strings over alphabet $\{a, b\}$ whose first and last letters are equal. Let L_{2} be the set of strings over alphabet $\{a, b\}$ that contain at least one b.
(a) Draw a state-transition graph of a finite automaton that accepts $L_{1} \cup L_{2}$. If such automaton does not exist, prove it.
Answer: See Figure 7.
(b) Draw a state-transition graph of a finite automaton that accepts $L_{1} \cap L_{2}$. If such automaton does not exist, prove it.
Answer: See Figure 8.
(c) Write a complete formal definition of a context-free grammar that generates $L_{1} L_{2}$. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where
$\Sigma=\{a, b\}, V=\{S, L, R, A\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow L R \\
& L \rightarrow a A a|b A b| a \mid b \\
& R \rightarrow A b A \\
& A \rightarrow A A|\lambda| a \mid b
\end{aligned}
$$

Figure 7:

Figure 8:

Problem 4 Let L be the language defined by the regular expression:

$$
(c a)^{*}(b d)^{*} \cup(a a)^{*}
$$

(a) Construct a state-transition graph of a finite automaton that accepts L. If such an automaton does not exist, prove it.

Answer: See Figure 9.

Figure 9:
(b) Construct a state-transition graph of a finite automaton that accepts L^{*}. If such an automaton does not exist, prove it.
Answer: See Figure 10.

Figure 10:

