CS320: Problems and Solutions for Day 5, Winter 2023

Problem 1 Let L be the language over alphabet $\{a, b, c\}$ consisting of all strings that do not contain $a b$ as a substring.
(a) Construct a finite automaton M that accepts L. If such an automaton M does not exist, explain why.

Answer: See figure Figure 1.

Figure 1:
(b) If you constructed an automaton M in your answer to part (a), is M deterministic? Justify briefly your answer.

Answer: Yes. In its transition graph, exactly one arc labeled by each alphabet symbol is incident out of every node, while there are no other arcs. This corresponds to a total state-transition function that maps state-symbol pairs to states.

Problem 2 Let L be the language defined by the regular expression

$$
a^{*}(a b \cup b a \cup e) b^{*}
$$

(a) Construct a finite automaton M that accepts L.

Answer: See Figure 2.

Figure 2:
(b) Is the finite automaton M that you constructed in your answer to part (a) deterministic? Justify briefly your answer.
Answer: No. For example, it does not have a b-transition out of the initial state; it has λ-transitions.
Problem 3 Let M be the finite automaton represented by the state diagram on Figure 3 , and let L be the language accepted by M.

Figure 3:
(a) Write 10 distinct strings that belong to L.
(b) Write 10 distinct strings over alphabet $\{a, b\}$ that do not belong to L.

Answer: Note that L is the set of strings over $\{a, b\}$ that do not contain $a a$ as a substring or contain $b b$ as a substring. \bar{L} is, therefore, the set of strings over $\{a, b\}$ that do not contain $b b$ as substring, but do contain $a a$ as a substring.

$\in L$	$\notin L$
a	$a a$
b	$a a b$
$b b a a$	$a a a b$
$b a$	$a a b a b a b a b$
$b b$	$b a a b$
$b b a a a$	$b a b a a$
$b a b a b$	$b a a b a b$
$a b b b$	$a b a a$
$b b a b$	$a a b a a$
$a a a a a a a a b b$	$a b a a a b$

Problem 4 Let M be the finite automaton represented by the state diagram on Figure 4 , and let L be the language accepted by M.

Figure 4:
(a) Write 10 distinct strings that belong to L.
(b) Write 10 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L.

Answer: Note that L is represented by a regular expression:

$$
(a b c)^{*} a^{*} \cup\left((a \cup b \cup c)^{*} c(a \cup b \cup c)\right)
$$

$\in L$	$\notin L$
a	b
$a a$	$b b$
$a b c$	c
$a b c a$	$a a b c$
$a b c a b c$	$b b c$
$c a$	$a b c b b$
$c b$	$c b a$
$a b c a b c a a$	$b c$
$a b c a b c b b b c c$	$a c$
$b b b b c a$	$a b b$

Problem 5 Let L be the language defined by the regular expression:

$$
(a \cup b c)^{*}(d d \cup g)^{*} \cup a b^{*}
$$

Construct a state-transition graph of a finite automaton M that accepts L. If such automaton does not exist, prove it.
Answer: See Figure 5.
Problem 6 Let L be the language defined by the regular expression:

$$
(a \cup c)^{*}(b \cup c)^{*} \cup b b b
$$

Figure 5:
(a) Construct a state-transition graph of a finite automaton that accepts L. If such automaton does not exist, prove it.
Answer: See Figure 6.

Figure 6:
(b) Does there exist an algorithm to convert an arbitrary regular expression into an equivalent finite automaton? Explain your answer briefly.
Answer: Yes. The construction is performed by a recursive decomposition of the regular expression into two expressions connected by the outer-most regular operator. If such two expressions, R_{1} and R_{2}, are converted into two (canonical) finite automata, M_{1} and M_{2}, with initial states q_{1}, q_{2} respectively, and final states f_{1}, f_{2} respectively, then their composition is converted to an automaton M, whose new initial and final states are q, f respectively, so that the composition is effected by new transitions, which are:

1. for union $R_{1} \cup R_{2}$:

$$
\begin{array}{ll}
{\left[q, \lambda, q_{1}\right] ;} & {\left[q, \lambda, q_{2}\right]} \\
{\left[f_{1}, \lambda, f\right] ;} & {\left[f_{2}, \lambda, f\right]}
\end{array}
$$

2. for concatenation $R_{1} \cdot R_{2}$:

$$
\begin{aligned}
& {\left[q, \lambda, q_{1}\right]} \\
& {\left[f_{1}, \lambda, q_{2}\right]} \\
& {\left[f_{2}, \lambda, f\right]}
\end{aligned}
$$

3. for Kleene star R_{1}^{*} :

$$
\begin{aligned}
& {\left[q, \lambda, q_{1}\right] ;} \\
& {\left[q_{1}, \lambda, f_{1}\right] ;} \\
& {\left[f_{1}, \lambda, q_{1}\right] ;} \\
& {\left[f_{1}, \lambda, f\right] ;}
\end{aligned}
$$

In the base case, \varnothing is accepted by an automaton with the empty transition set, empty string is accepted by an automaton whose only transition is of the form:

$$
[q, \lambda, f]
$$

and an individual letter is accepted by an automaton whose only transition is of the form:

$$
[q, a, f]
$$

Problem 7 Let L be the set of strings over alphabet $\{a, b, c\}$ that do not contain the substring $a a$.
(a) Draw a state-transition graph of a finite automaton that accepts L. If such automaton does not exist, prove it.

Figure 7:

Answer: See Figure 7.

(b) Is the complement \bar{L} of the language L countable? Explain your answer briefly.

Answer: Yes - every language is countable, as a subset of the set Σ^{*}, which is countable because it is the set of all finite-length sequences over a countable set.

Problem 8 Let L be the set of strings over alphabet $\{a, b, c\}$ that do not start with c and do not end with a.
(a) Draw a state-transition graph of a finite automaton that accepts \bar{L} (the complement of L). If such automaton does not exist, prove it.
Answer: See Figure 8.

Figure 8:
(b) Does there exist an algorithm that solves the following problem:

Input: An arbitrary regular expression e.
Output: A finite automaton M_{1} that accepts the complement of the language defined by e.
Explain your answer briefly.
Answer: Yes-such algorithm starts out by converting the regular expression into an equivalent finite automaton; next, this automaton is converted into an equivalent deterministic finite automaton; finally, the deterministic finite automaton is converted into one that accepts the complement.

Problem 9 Let L be the set of all strings over alphabet $\{a, b\}$ in which all a 's come before all b 's, and the number of a 's is odd but the number of b 's is even.
(a) Draw a state-transition graph of a finite automaton that accepts L. If such automaton does not exist, prove it.

Answer: See Figure 9.

Figure 9:
(b) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b\}$, $V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a a A \mid a \\
& B \rightarrow b b B \mid \lambda
\end{aligned}
$$

Problem 10 Let L be the set of strings over alphabet $\{a, b, c\}$ whose total number of a 's and b 's is at least 2 .
(a) Write a regular expression that defines L. If such a regular expression does not exist, explain why.

Answer:

$$
(a \cup b \cup c)^{*}(a \cup b)(a \cup b \cup c)^{*}(a \cup b)(a \cup b \cup c)^{*}
$$

(b) Construct a state transition graph of a finite automaton that accepts L. If such an automaton does not exist, explain why.
Answer: See Figure 10.

Figure 10:
(c) Write a complete formal definition of a context-free grammar G that generates L. If such a grammar does not exist, explain why.
Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b, c\}$,
$V=\{S, B, A\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow B A B A B \\
& B \rightarrow B B|\lambda| a|b| c \\
& A \rightarrow a \mid b
\end{aligned}
$$

Problem 11 Let L be the set of all nonempty strings over alphabet $\{a, b, d\}$ whose first symbol is equal to the third symbol.
(a) Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Answer:

$$
\begin{aligned}
& a(a \cup b \cup d) a(a \cup b \cup d)^{*} \\
& b(a \cup b \cup d) b(a \cup b \cup d)^{*} \\
& \bigcup \\
& d(a \cup b \cup d) d(a \cup b \cup d)^{*}
\end{aligned}
$$

(b) Construct a state-transition graph of a finite automaton that accepts L. If such an automaton does not exist, prove it.
Answer: See Figure 11.

Figure 11:

