CS320: Problems and Solutions for Day 4, Winter 2023

Problem 1 Let L be a language over alphabet $\{a, b\}$ with the following property:

For every word $w \in L$:

if |w| is odd, then the middle symbol of w is a;

if |w| is even, then w ends with bb.

Write a complete formal definition of a context-free grammar G that generates L. If such grammar G does not exist, explain why.

Answer: $G = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b\}$ is the set of terminals; $V = \{S, E, O\}$ is the set of variables; S is the start symbol; and the set of productions P comprises:

 $\begin{array}{l} S \rightarrow O \mid E \\ O \rightarrow aOa \mid aOb \mid bOa \mid bOb \mid a \\ E \rightarrow aaE \mid abE \mid baE \mid bbE \mid bb \end{array}$

Problem 2 Construct a context-free grammar G over alphabet $\{a, b, c\}$ that generates the language

$$L(G) = \{a^{m}b^{n}c^{i} \mid m + n < i\}$$

where m, n, i are non-negative integers.

Answer: Let $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}$ is the set of terminals; $V = \{S, A, B\}$ is the set of variables; S is the start symbol. The set of productions P comprises:

$$\begin{array}{l} S \rightarrow Sc \mid Ac \\ A \rightarrow aAc \mid B \\ B \rightarrow bBc \mid \lambda \end{array}$$

Problem 3 (a) Does there exist a pair of languages L_1 and L_2 such that all of the following three conditions hold?

- L_1 is regular;
- $L_2 \subseteq L_1;$
- L_2 is not regular, but is context-free.

If your answer to this part is "no" go to part (d), else complete parts (b)-(c).

Answer: Yes. In fact, for any alphabet Σ , the language Σ^* is regular, while every (non-regular) language over Σ is its subset. See parts (b)–(c) for a more interesting example where L_1 is infinite, with an infinite complement. (b) Write a regular expression that defines L_1 (as in part (a)).

Answer:

 a^*b^*

(c) Write a complete formal definition of a context-free grammar that generates L_2 (as in part (a)). Describe L_2 briefly, using words and set-notation.

Answer: Let L_2 be the language of strings over $\{a, b\}$ where all *a*'s precede all *b*'s and the number of *a*'s in the string equals the number of *b*'s:

$$L_2 = \{a^n b^n \mid n \ge 0\}$$

 L_2 is generated by the context-free grammar: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b\}$ is the set of terminals; $V = \{S\}$ is the set of variables; S is the start symbol, and the production set P is:

$$S \rightarrow aSb \mid \lambda$$

The argument that shows that L_2 is not regular is almost identical to the one given in Problem ??.

(d) Explain why such a pair of languages L_1 and L_2 (as in part (a)) does not exist.

Problem 4 Let *L* be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A, B\}$, and the production set *P* is:

$$\begin{array}{l} S \rightarrow aSb \mid A \\ A \rightarrow cAb \mid B \\ B \rightarrow cb \end{array}$$

(a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.

(b) Write 8 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why. Answer: Observe that:

$$L = \{a^m c^n b^{m+n} \mid m \ge 0, n \ge 1\}$$

whence:

$\in L$	$\not\in L$
cb	b
ccbb	bc
cccbbb	ba
acbb	bca
accbbb	bcb
acccbbbb	aba
aaacbbbb	ab
aaccbbbb	abc

Problem 5 Write a complete formal definition of a context-free grammar G that generates language L, defined as follows:

 $L = \{a^m b^n ac \mid m \ge 0, n > m\}$

If such a grammar does not exist, explain why.

Answer: $G = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b, c\}, V = \{S, A, B\}$, and P is: $S \rightarrow Aac$ $A \rightarrow aAb \mid B$ $B \rightarrow bB \mid b$

$$L = \{a^m b^m \mid m \ge 0\}$$

Write a complete formal definition of a context-free grammar that generates the <u>complement</u> of L in $\{a, b\}^*$. If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b\}, V = \{S_{ba}, S_{<}, S_{>}, A, B, D\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow S_{ba} \mid S_{<} \mid S_{>} \\ S_{ba} \rightarrow DbaD \\ D \rightarrow aD \mid bD \mid \lambda \\ S_{<} \rightarrow aS_{<}b \mid B \\ B \rightarrow bB \mid b \\ S_{>} \rightarrow aS_{>}b \mid A \\ A \rightarrow aA \mid a \end{array}$$

Problem 7 Let L_1 be the language defined by the regular expression:

$$(a\cup b)^*\,c\,(a\cup b)^*\,c\,(a\cup b)^*\,c\,(a\cup b)^*$$

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A\}$, and the production set P is:

$$\begin{array}{l} S \to AAS \mid \lambda \\ A \to a \mid b \mid c \end{array}$$

(a) Write 5 distinct strings that belong to L_1 and do not belong to L_2 (belong to $L_1 \cap \overline{L_2}$). If such strings do not exist, explain why.

Answer: Observe that L_1 is the set of strings over alphabet $\{a, b, c\}$ that contain exactly 3 occurrences of letter c, while L_2 is the set of strings over alphabet $\{a, b, c\}$ that have even length.

(b) Write 5 distinct strings that belong to L_2 and do not belong to L_1 (belong to $\overline{L_1} \cap L_2$). If such strings do not exist, explain why.

Answer:

 $\lambda, aa, ab, ac, abca$

(c) Write 5 distinct strings that belong to L_1 and L_2 (belong to $L_1 \cap L_2$). If such strings do not exist, explain why. Answer:

accc, cbccaa, abcacc, cacaca, cbbcca

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_1 and do not belong to L_2 (belong to $\overline{L_1} \cap \overline{L_2}$). If such strings do not exist, explain why.

Answer:

a,b,c,aaa,aac

Problem 8 (a) Let L_1 be the set of all strings over alphabet $\{a, b, d\}$ that do not contain the substring *dba*. Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such a grammar does not exist, explain why.

Answer: $G_1 = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b, d\}, V = \{S, A, B\}$, and the production set P is:

$$S \rightarrow aS \mid bS \mid dA \mid \lambda$$
$$A \rightarrow aS \mid bB \mid dA \mid \lambda$$
$$B \rightarrow bS \mid dA \mid \lambda$$

(b) Let L_2 be the set of all strings over alphabet $\{a, b\}$ that have even length or contain an even number of a's. Write a complete formal definition of a context-free grammar G_2 that generates language L_2 . If such a grammar does not exist, explain why.

Answer: $G_2 = \{V, \Sigma, P, S\}$, where: $\Sigma = \{a, b\}, V = \{S, S_1, S_2, A, Z\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow S_1 S_1 \mid \lambda \mid ZZ \\ Z \rightarrow a \mid b \\ S_2 \rightarrow aA \mid bS_2 \mid \lambda \\ A \rightarrow bA \mid aS_2 \end{array}$$

Problem 9 Let L_1 be the language defined by the regular expression:

$$(a\cup ba\cup ca)^*~(b\cup c)$$

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}$, $V = \{S, A, B\}$, and the production set P is:

$$S \to ABABA$$
$$A \to AA \mid a \mid c \mid \lambda$$
$$B \to b$$

(a) Write 5 distinct strings that belong to L_1 and do not belong to L_2 (belong to $L_1 \cap \overline{L_2}$). If such strings do not exist, explain why.

Answer:

ab, ac, aab, aac, cab

(b) Write 5 distinct strings that belong to L_2 and do not belong to L_1 (belong to $\overline{L_1} \cap L_2$). If such strings do not exist, explain why.

Answer:

(c) Write 5 distinct strings that belong to L_1 and L_2 (belong to $L_1 \cap L_2$). If such strings do not exist, explain why. Answer:

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_1 and do not belong to L_2 (belong to L_2 (belong to $\overline{L_1} \cap \overline{L_2}$). If such strings do not exist, explain why.

Answer:

a, aa, aaa, aaaa, aaaaa

Note that L_2 is the set of strings over $\{a, b, c\}$ that contain exactly 2 occurrences of letter b. It is given by the regular expression:

$$(a\cup c)^*\,b\,(a\cup c)^*\,b\,(a\cup c)^*$$

Problem 10 Let *L* be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A, B, D\}$, and *P* is:

$$\begin{array}{l} S \rightarrow AB \mid D \\ A \rightarrow AA \mid \lambda \mid abc \\ B \rightarrow bB \mid \lambda \\ D \rightarrow aaD \mid bbbD \mid cD \mid \lambda \end{array}$$

Write a regular expression that defines L. If such regular expression does not exist, prove it.

Answer:

$$(abc)^*b^* \cup (aa \cup bbb \cup c)^*$$

Problem 11 Write a complete formal definition of a context-free grammar $G = \{V, \Sigma, P, S\}$ over alphabet $\{a, b, c\}$ such that G generates the language of all strings whose length is even or gives remainder 1 if divided by 3. If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}$, $V = \{S_1, S_2, D\}$, and *P* is:

$$\begin{array}{l} S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow DDS_1 \mid \lambda \\ S_2 \rightarrow DDDS_2 \mid D \\ D \rightarrow a \mid b \mid c \end{array}$$

Problem 12 Let L_1 be the language defined by the regular expression:

 $(ab)^{*}$

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b\}$, $V = \{S\}$, and the production set P is:

$$S \to aSa \mid bSb \mid a \mid b \mid \lambda$$

(a) Write a regular expression that defines $L_1 \cap L_2$.

If such regular expression does not exist, explain why.

Answer:

To verify the answer, observe first that L_2 is the language of all palindromes over $\{a, b\}$. In contrast, every non-empty string from L_1 begins with a and ends with b, and cannot be a palindrome. Hence, $L_1 \cap L_2$ contains no non-empty strings. However, the empty string is derivable in G by the last rule; it also belongs to L_1 , because L_1 is a Kleene star of a non-empty language.

(b) What is the cardinality of $L_1 \cap L_2$? (If possible, state the exact number. If the set is infinite, specify if it is countable or not.)

λ

Answer:

$$|L_1 \cap L_2| = |\{\lambda\}| = 1$$

(c) Compare the cardinalities of L_1 and L_2 , and explain which one (if any) is greater.

Answer:

$$|L_1| = |L_2| = \aleph_0$$

Every language is countable, and so are L_1 and L_2 . To see that L_1 is infinite, observe that it is a Kleene star of a non-empty language. To see that L_2 is infinite, observe that any of the first two rules can be applied an unbounded number of times, before a non-empty terminal string is produced by any of the next two rules.

(d) Compare the cardinalities of $L_1 \cup L_2$ and $L_1 \cap L_2$, and explain which one (if any) is greater.

Answer: By the answer to part (b):

$$|L_1 \cap L_2| = 1$$

By the answer to part (c), both L_1 and L_2 are infinite and countable—hence, their union is also infinite and countable:

$$|L_1 \cup L_2| = \aleph_0$$

Consequently:

$$|L_1 \cap L_2| < |L_1 \cup L_2|$$

Problem 13 (a) Let L_1 be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$L_1 = \{a^n b^m c^k d^{m+2} e^{n+3} \mid k, n, m \ge 0\}$$

Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such grammar does not exist, explain why.

Answer: $G_1 = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c, d, e\}$, $V = \{S, A, B\}$, and the production set P is:

$$S \to aSe \mid Aeee \\ A \to bAd \mid Bdd \\ B \to cB \mid \lambda$$

(b) Let L_2 be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$L_2 = \{a^{2n}b^{3n}c^{k+2}d^{3k+1}e^{m+3}a^{2m+5} \mid k, n, m \ge 0\}$$

Write a complete formal definition of a context-free grammar G_2 that generates language L_2 . If such grammar does not exist, explain why.

Answer: $G_2 = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c, d, e\}$, $V = \{S, A, B, D\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow ABD \\ A \rightarrow aaAbbb \mid \lambda \\ B \rightarrow cBddd \mid ccd \\ D \rightarrow eDaa \mid eeeaaaaa \end{array}$$

Problem 14 Let:

$$L = \{ a^{\ell} b^{2j} c^k d^{2m} \mid \ell, j, k, m \ge 0 \}$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c, d\}, V = \{S, A, B, D, E\}$, and P is:

$$S \rightarrow ABED$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bbB \mid \lambda$$

$$E \rightarrow cE \mid \lambda$$

$$D \rightarrow ddD \mid \lambda$$

(b) Write a regular expression that defines L. If such regular expression does not exist, prove it. Answer:

$$a^*(bb)^*c^*(dd)^*$$

Problem 15 (a) Let:

$$L = \{a^{i}b^{j}c^{k}d^{m} \mid i = j + k \text{ and } m = 2\ell, i, j, k, m, \ell \ge 0\}$$

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

Answer: $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c, d\}$, $V = \{S, A, B, D\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow AD \\ A \rightarrow aAc \mid B \\ B \rightarrow aBb \mid \lambda \\ D \rightarrow DD \mid \lambda \mid dd \end{array}$$

(b) What is the cardinality of the set of context-free grammars? Answer by giving the exact number (if this set is finite) or by specifying if it is countable or uncountable.

Answer: The set of context-free grammars is infinite and countable (cardinality \aleph_0 .)

Problem 16 (a) Let L be the language defined by the regular expression:

$$(a (ca \cup da)^* b) \cup (b (ca \cup da)^* a)$$

Write a complete formal definition of a context-free grammar G_1 that generates language L. If such grammar does not exist, explain why.

Answer: $G_1 = \{V_1, \Sigma, P_1, S\}$, where $\Sigma = \{a, b, c, d\}$, $V_1 = \{S, A, B, D\}$, and the production set P_1 is:

$$\begin{split} S &\to A \mid B \\ A &\to a D b \\ B &\to b D a \\ D &\to D D \mid \lambda \mid ca \mid da \end{split}$$

(b) Let L be the language defined in part (a).

Write a complete formal definition of a context-free grammar G_2 that generates language L^* . If such grammar does not exist, explain why.

Answer: $G_2 = \{V_2, \Sigma, P_2, S_2\}$, where $\Sigma = \{a, b, c, d\}$, $V_2 = \{S_2, S, A, B, D\}$, and the production set P_2 is:

$$\begin{array}{l} S_2 \rightarrow S_2 S_2 \mid \lambda \mid S \\ S \rightarrow A \mid B \\ A \rightarrow a D b \\ B \rightarrow b D a \\ D \rightarrow D D \mid \lambda \mid ca \mid da \end{array}$$

Problem 17 Let *L* be the set of strings over alphabet $\Sigma = \{a, b, c\}$ defined as follows:

$$L = \{a^m b^k c^\ell \mid m, k, \ell \ge 0 \land m = k + \ell\}$$

1. Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, explain why.

Answer: The general template for strings in L is:

$$a^{\ell}a^{k}b^{k}c^{\ell}$$
 for $k, \ell \geq 0$

whence the grammar: $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b, c\}, V = \{S, B\}$, and the production set P is:

$$\begin{array}{l} S \to aSc \mid B \\ B \to aBb \mid \lambda \end{array}$$

2. List six different strings that belong to \overline{L} (where $\overline{L} = \Sigma \setminus L$). If this is impossible, explain why. Answer:

cba, ca, cb, ba, abab, abca

3. List six different strings that belong to

 $\overline{L} \cap a^*b^*c^*$

(where $\overline{L} = \Sigma \setminus L$). If this is impossible, explain why. Answer:

4. State the cardinalities of L and \overline{L} , and determine which one is greater (if any.) If possible, give exact numbers, otherwise state if sets are countable or not. Explain your answer briefly.

Answer: L and \overline{L} are infinite and countable:

$$|L| = |\overline{L}| = \aleph_0$$

To see that L is infinite, observe that it contains, for example, a word $(aa)^n b^n c^n$ for every $n \ge 0$. To see that \overline{L} is infinite, note that it contains, for example, aa^* . L and \overline{L} are countable, since every language is countable.

Problem 18 Let L_1 be the language defined by the regular expression:

 a^*b^*

Let L_2 be the language generated by the context-free grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b\}, V = \{S\}$, and the production set P is:

$$S \to aSb \mid \lambda$$

(a) Write 5 distinct strings that belong to $L_1 \setminus L_2$. If such strings do not exist, explain why. Answer:

a, b, aab, abbb, abbbbbb

(b) Write 5 distinct strings that belong to $L_2 \setminus L_1$. If such strings do not exist, explain why.

Answer: It is impossible to list even one such string, since:

$$L_2 \setminus L_1 = \emptyset$$

Precisely:

 $L_2 \subset L_1$

To see this, observe:

$$L_1 = \{a^m b^k \mid m, k \ge 0\}$$
$$L_2 = \{a^m b^k \mid m = k \text{ and } m, k \ge 0\}$$

(c) Write 5 distinct strings that belong to $L_1 \cap L_2$. If such strings do not exist, explain why. Answer:

 $\lambda, ab, aabb, aaabbb, aaaabbbb$

(Recall that $L_1 \cap L_2 = L_2$.)

(d) Write 5 distinct strings over alphabet $\{a, b\}$ that belong to $\overline{L_1 \cup L_2}$ (the complement of $L_1 \cup L_2$.) If such strings do not exist, explain why.

Answer:

ba, aabba, bab, baabb, aba

(Recall that $L_1 \cup L_2 = L_1$. Hence, $\overline{L_1 \cup L_2} = \overline{L_1}$, which is exactly the set of strings that contain ba as a substring.)