CS320: Problems and Solutions for Day 4, Winter 2023

Problem 1 Let L be a language over alphabet $\{a, b\}$ with the following property:
For every word $w \in L$:
if $|w|$ is odd, then the middle symbol of w is a;
if $|w|$ is even, then w ends with $b b$.
Write a complete formal definition of a context-free grammar G that generates L. If such grammar G does not exist, explain why.
Answer: $G=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b\}$ is the set of terminals;
$V=\{S, E, O\}$ is the set of variables;
S is the start symbol;
and the set of productions P comprises:

$$
\begin{aligned}
& S \rightarrow O \mid E \\
& O \rightarrow a O a|a O b| b O a|b O b| a \\
& E \rightarrow a a E|a b E| b a E|b b E| b b
\end{aligned}
$$

Problem 2 Construct a context-free grammar G over alphabet $\{a, b, c\}$ that generates the language

$$
L(G)=\left\{a^{m} b^{n} c^{i} \mid m+n<i\right\}
$$

where m, n, i are non-negative integers.
Answer: Let $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}$ is the set of terminals; $V=\{S, A, B\}$ is the set of variables; S is the start symbol. The set of productions P comprises:

$$
\begin{aligned}
& S \rightarrow S c \mid A c \\
& A \rightarrow a A c \mid B \\
& B \rightarrow b B c \mid \lambda
\end{aligned}
$$

Problem 3 (a) Does there exist a pair of languages L_{1} and L_{2} such that all of the following three conditions hold?

- L_{1} is regular;
- $L_{2} \subseteq L_{1}$;
- L_{2} is not regular, but is context-free.

If your answer to this part is "no" go to part (d), else complete parts (b)-(c).
Answer: Yes. In fact, for any alphabet Σ, the language Σ^{*} is regular, while every (non-regular) language over Σ is its subset. See parts (b)-(c) for a more interesting example where L_{1} is infinite, with an infinite complement.
(b) Write a regular expression that defines L_{1} (as in part (a)).

Answer:

$$
a^{*} b^{*}
$$

(c) Write a complete formal definition of a context-free grammar that generates L_{2} (as in part (a)). Describe L_{2} briefly, using words and set-notation.
Answer: Let L_{2} be the language of strings over $\{a, b\}$ where all a 's precede all b 's and the number of a 's in the string equals the number of b 's:

$$
L_{2}=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

L_{2} is generated by the context-free grammar: $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b\}$ is the set of terminals; $V=\{S\}$ is the set of variables; S is the start symbol, and the production set P is:

$$
S \rightarrow a S b \mid \lambda
$$

The argument that shows that L_{2} is not regular is almost identical to the one given in Problem ??.
(d) Explain why such a pair of languages L_{1} and L_{2} (as in part (a)) does not exist.

Problem 4 Let L be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow a S b \mid A \\
& A \rightarrow c A b \mid B \\
& B \rightarrow c b
\end{aligned}
$$

(a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 8 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Answer: Observe that:

$$
L=\left\{a^{m} c^{n} b^{m+n} \mid m \geq 0, n \geq 1\right\}
$$

whence:

$\in L$	$\notin L$
$c b$	b
$c c b b$	$b c$
$c c c b b b$	$b a$
$a c b b$	$b c a$
$a c c b b b$	$b c b$
$a c c c b b b b$	$a b a$
$a a a c b b b b$	$a b$
$a a c c b b b b$	$a b c$

Problem 5 Write a complete formal definition of a context-free grammar G that generates language L, defined as follows:

$$
L=\left\{a^{m} b^{n} a c \mid m \geq 0, n>m\right\}
$$

If such a grammar does not exist, explain why.
Answer: $G=\{V, \Sigma, P, S\}$, where: $\Sigma=\{a, b, c\}, V=\{S, A, B\}$, and P is:

$$
\begin{aligned}
& S \rightarrow A a c \\
& A \rightarrow a A b \mid B \\
& B \rightarrow b B \mid b
\end{aligned}
$$

Problem 6 Let:

$$
L=\left\{a^{m} b^{m} \mid m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar that generates the complement of L in $\{a, b\}^{*}$. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b\}, V=\left\{S_{b a}, S_{<}, S_{>}, A, B, D\right\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow S_{b a}\left|S_{<}\right| S_{>} \\
& S_{b a} \rightarrow D b a D \\
& D \rightarrow a D|b D| \lambda \\
& S_{<} \rightarrow a S_{<} b \mid B \\
& B \rightarrow b B \mid b \\
& S_{>} \rightarrow a S_{>} b \mid A \\
& A \rightarrow a A \mid a
\end{aligned}
$$

Problem 7 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b)^{*} c(a \cup b)^{*} c(a \cup b)^{*} c(a \cup b)^{*}
$$

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A A S \mid \lambda \\
& A \rightarrow a|b| c
\end{aligned}
$$

(a) Write 5 distinct strings that belong to L_{1} and do not belong to L_{2} (belong to $L_{1} \cap \overline{L_{2}}$). If such strings do not exist, explain why.
Answer: Observe that L_{1} is the set of strings over alphabet $\{a, b, c\}$ that contain exactly 3 occurrences of letter c, while L_{2} is the set of strings over alphabet $\{a, b, c\}$ that have even length.

$$
c c c, c c c a a, a b c c c, c a c a c, c b b c c
$$

(b) Write 5 distinct strings that belong to L_{2} and do not belong to L_{1} (belong to $\overline{L_{1}} \cap L_{2}$). If such strings do not exist, explain why.
Answer:

$$
\lambda, a a, a b, a c, a b c a
$$

(c) Write 5 distinct strings that belong to L_{1} and L_{2} (belong to $L_{1} \cap L_{2}$). If such strings do not exist, explain why.

Answer:

$$
a c c c, c b c c a a, a b c a c c, c a c a c a, c b b c c a
$$

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_{1} and do not belong to L_{2} (belong to $\left.\overline{L_{1}} \cap \overline{L_{2}}\right)$. If such strings do not exist, explain why.
Answer:

$$
a, b, c, a a a, a a c
$$

Problem 8 (a) Let L_{1} be the set of all strings over alphabet $\{a, b, d\}$ that do not contain the substring $d b a$.
Write a complete formal definition of a context-free grammar G_{1} that generates language L_{1}. If such a grammar does not exist, explain why.
Answer: $G_{1}=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b, d\}, V=\{S, A, B\}$,
and the production set P is:

$$
\begin{aligned}
& S \rightarrow a S|b S| d A \mid \lambda \\
& A \rightarrow a S|b B| d A \mid \lambda \\
& B \rightarrow b S|d A| \lambda
\end{aligned}
$$

(b) Let L_{2} be the set of all strings over alphabet $\{a, b\}$ that have even length or contain an even number of a 's.

Write a complete formal definition of a context-free grammar G_{2} that generates language L_{2}. If such a grammar does not exist, explain why.
Answer: $G_{2}=\{V, \Sigma, P, S\}$, where:
$\Sigma=\{a, b\}, V=\left\{S, S_{1}, S_{2}, A, Z\right\}$,
and the production set P is:

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2} \\
& S_{1} \rightarrow S_{1} S_{1}|\lambda| Z Z \\
& Z \rightarrow a \mid b \\
& S_{2} \rightarrow a A\left|b S_{2}\right| \lambda \\
& A \rightarrow b A \mid a S_{2}
\end{aligned}
$$

Problem 9 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b a \cup c a)^{*}(b \cup c)
$$

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}$, $V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A B A B A \\
& A \rightarrow A A|a| c \mid \lambda \\
& B \rightarrow b
\end{aligned}
$$

(a) Write 5 distinct strings that belong to L_{1} and do not belong to L_{2} (belong to $L_{1} \cap \overline{L_{2}}$). If such strings do not exist, explain why.
Answer:
(b) Write 5 distinct strings that belong to L_{2} and do not belong to L_{1} (belong to $\overline{L_{1}} \cap L_{2}$). If such strings do not exist, explain why.
Answer:

$$
b b, a b b, c b b, a a b b, c c b b
$$

(c) Write 5 distinct strings that belong to L_{1} and L_{2} (belong to $L_{1} \cap L_{2}$). If such strings do not exist, explain why. Answer:

$$
b a b, b a b a c, a b a b, a b a b a c, c a b a b
$$

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_{1} and do not belong to L_{2} (belong to $\left.\overline{L_{1}} \cap \overline{L_{2}}\right)$. If such strings do not exist, explain why.

Answer:

$$
a, a a, a a a, a a a a, a a a a a
$$

Note that L_{2} is the set of strings over $\{a, b, c\}$ that contain exactly 2 occurrences of letter b. It is given by the regular expression:

$$
(a \cup c)^{*} b(a \cup c)^{*} b(a \cup c)^{*}
$$

Problem 10 Let L be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A, B, D\}$, and P is:

$$
\begin{aligned}
& S \rightarrow A B \mid D \\
& A \rightarrow A A|\lambda| a b c \\
& B \rightarrow b B \mid \lambda \\
& D \rightarrow a a D|b b b D| c D \mid \lambda
\end{aligned}
$$

Write a regular expression that defines L. If such regular expression does not exist, prove it.
Answer:

$$
(a b c)^{*} b^{*} \cup(a a \cup b b b \cup c)^{*}
$$

Problem 11 Write a complete formal definition of a context-free grammar $G=\{V, \Sigma, P, S\}$ over alphabet $\{a, b, c\}$ such that G generates the language of all strings whose length is even or gives remainder 1 if divided by 3 . If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}$, $V=\left\{S_{1}, S_{2}, D\right\}$, and P is:

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2} \\
& S_{1} \rightarrow D D S_{1} \mid \lambda \\
& S_{2} \rightarrow D D D S_{2} \mid D \\
& D \rightarrow a|b| c
\end{aligned}
$$

Problem 12 Let L_{1} be the language defined by the regular expression:

$$
(a b)^{*}
$$

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b\}, V=\{S\}$, and the production set P is:

$$
S \rightarrow a S a|b S b| a|b| \lambda
$$

(a) Write a regular expression that defines $L_{1} \cap L_{2}$.

If such regular expression does not exist, explain why.
Answer:

λ

To verify the answer, observe first that L_{2} is the language of all palindromes over $\{a, b\}$. In contrast, every non-empty string from L_{1} begins with a and ends with b, and cannot be a palindrome. Hence, $L_{1} \cap L_{2}$ contains no non-empty strings. However, the empty string is derivable in G by the last rule; it also belongs to L_{1}, because L_{1} is a Kleene star of a non-empty language.
(b) What is the cardinality of $L_{1} \cap L_{2}$? (If possible, state the exact number. If the set is infinite, specify if it is countable or not.)

Answer:

$$
\left|L_{1} \cap L_{2}\right|=|\{\lambda\}|=1
$$

(c) Compare the cardinalities of L_{1} and L_{2}, and explain which one (if any) is greater.

Answer:

$$
\left|L_{1}\right|=\left|L_{2}\right|=\aleph_{0}
$$

Every language is countable, and so are L_{1} and L_{2}. To see that L_{1} is infinite, observe that it is a Kleene star of a non-empty language. To see that L_{2} is infinite, observe that any of the first two rules can be applied an unbounded number of times, before a non-empty terminal string is produced by any of the next two rules.
(d) Compare the cardinalities of $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$, and explain which one (if any) is greater.

Answer: By the answer to part (b):

$$
\left|L_{1} \cap L_{2}\right|=1
$$

By the answer to part (c), both L_{1} and L_{2} are infinite and countable-hence, their union is also infinite and countable:

$$
\left|L_{1} \cup L_{2}\right|=\aleph_{0}
$$

Consequently:

$$
\left|L_{1} \cap L_{2}\right|<\left|L_{1} \cup L_{2}\right|
$$

Problem 13 (a) Let L_{1} be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$
L_{1}=\left\{a^{n} b^{m} c^{k} d^{m+2} e^{n+3} \mid k, n, m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar G_{1} that generates language L_{1}. If such grammar does not exist, explain why.
Answer: $G_{1}=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c, d, e\}$, $V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow a S e \mid \text { Aeee } \\
& A \rightarrow b A d \mid B d d \\
& B \rightarrow c B \mid \lambda
\end{aligned}
$$

(b) Let L_{2} be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$
L_{2}=\left\{a^{2 n} b^{3 n} c^{k+2} d^{3 k+1} e^{m+3} a^{2 m+5} \mid k, n, m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar G_{2} that generates language L_{2}. If such grammar does not exist, explain why.
Answer: $G_{2}=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c, d, e\}$, $V=\{S, A, B, D\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A B D \\
& A \rightarrow a a A b b b \mid \lambda \\
& B \rightarrow c B d d d \mid c c d \\
& D \rightarrow e D a a \mid \text { eeeaaaaa }
\end{aligned}
$$

Problem 14 Let:

$$
L=\left\{a^{\ell} b^{2 j} c^{k} d^{2 m} \mid \ell, j, k, m \geq 0\right\}
$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where
$\Sigma=\{a, b, c, d\}, V=\{S, A, B, D, E\}$, and P is:

$$
\begin{aligned}
& S \rightarrow A B E D \\
& A \rightarrow a A \mid \lambda \\
& B \rightarrow b b B \mid \lambda \\
& E \rightarrow c E \mid \lambda \\
& D \rightarrow d d D \mid \lambda
\end{aligned}
$$

(b) Write a regular expression that defines L. If such regular expression does not exist, prove it.

Answer:

$$
a^{*}(b b)^{*} c^{*}(d d)^{*}
$$

Problem 15 (a) Let:

$$
L=\left\{a^{i} b^{j} c^{k} d^{m} \mid i=j+k \text { and } m=2 \ell, i, j, k, m, \ell \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c, d\}$, $V=\{S, A, B, D\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A D \\
& A \rightarrow a A c \mid B \\
& B \rightarrow a B b \mid \lambda \\
& D \rightarrow D D|\lambda| d d
\end{aligned}
$$

(b) What is the cardinality of the set of context-free grammars? Answer by giving the exact number (if this set is finite) or by specifying if it is countable or uncountable.
Answer: The set of context-free grammars is infinite and countable (cardinality \aleph_{0}.)
Problem 16 (a) Let L be the language defined by the regular expression:

$$
\left(a(c a \cup d a)^{*} b\right) \cup\left(b(c a \cup d a)^{*} a\right)
$$

Write a complete formal definition of a context-free grammar G_{1} that generates language L. If such grammar does not exist, explain why.
Answer: $G_{1}=\left\{V_{1}, \Sigma, P_{1}, S\right\}$, where $\Sigma=\{a, b, c, d\}$, $V_{1}=\{S, A, B, D\}$, and the production set P_{1} is:

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow a D b \\
& B \rightarrow b D a \\
& D \rightarrow D D|\lambda| c a \mid d a
\end{aligned}
$$

(b) Let L be the language defined in part (a).

Write a complete formal definition of a context-free grammar G_{2} that generates language L^{*}. If such grammar does not exist, explain why.
Answer: $G_{2}=\left\{V_{2}, \Sigma, P_{2}, S_{2}\right\}$, where $\Sigma=\{a, b, c, d\}$, $V_{2}=\left\{S_{2}, S, A, B, D\right\}$, and the production set P_{2} is:

$$
\begin{aligned}
& S_{2} \rightarrow S_{2} S_{2}|\lambda| S \\
& S \rightarrow A \mid B \\
& A \rightarrow a D b \\
& B \rightarrow b D a \\
& D \rightarrow D D|\lambda| c a \mid d a
\end{aligned}
$$

Problem 17 Let L be the set of strings over alphabet $\Sigma=\{a, b, c\}$ defined as follows:

$$
L=\left\{a^{m} b^{k} c^{\ell} \mid m, k, \ell \geq 0 \wedge m=k+\ell\right\}
$$

1. Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, explain why.

Answer: The general template for strings in L is:

$$
a^{\ell} a^{k} b^{k} c^{\ell} \text { for } k, \ell \geq 0
$$

whence the grammar: $G=(V, \Sigma, P, S)$, where
$\Sigma=\{a, b, c\}, V=\{S, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow a S c \mid B \\
& B \rightarrow a B b \mid \lambda
\end{aligned}
$$

2. List six different strings that belong to \bar{L} (where $\bar{L}=\Sigma \backslash L$). If this is impossible, explain why.

Answer:

$$
c b a, c a, c b, b a, a b a b, a b c a
$$

3. List six different strings that belong to

$$
\bar{L} \cap \boldsymbol{a}^{*} \boldsymbol{b}^{*} \boldsymbol{c}^{*}
$$

(where $\bar{L}=\Sigma \backslash L$). If this is impossible, explain why.
Answer:

$$
a, b, c, a a a b c, a b c, a c c
$$

4. State the cardinalities of L and \bar{L}, and determine which one is greater (if any.) If possible, give exact numbers, otherwise state if sets are countable or not. Explain your answer briefly.
Answer: L and \bar{L} are infinite and countable:

$$
|L|=|\bar{L}|=\aleph_{0}
$$

To see that L is infinite, observe that it contains, for example, a word $(a a)^{n} b^{n} c^{n}$ for every $n \geq 0$. To see that \bar{L} is infinite, note that it contains, for example, $\boldsymbol{a} \boldsymbol{a}^{*} . L$ and \bar{L} are countable, since every language is countable.

Problem 18 Let L_{1} be the language defined by the regular expression:

$$
a^{*} b^{*}
$$

Let L_{2} be the language generated by the context-free grammar $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b\}, V=\{S\}$, and the production set P is:

$$
S \rightarrow a S b \mid \lambda
$$

(a) Write 5 distinct strings that belong to $L_{1} \backslash L_{2}$. If such strings do not exist, explain why.

Answer:

$$
a, b, a a b, a b b b, a b b b b b b
$$

(b) Write 5 distinct strings that belong to $L_{2} \backslash L_{1}$. If such strings do not exist, explain why.

Answer: It is impossible to list even one such string, since:

$$
L_{2} \backslash L_{1}=\varnothing
$$

Precisely:

$$
L_{2} \subset L_{1}
$$

To see this, observe:

$$
\begin{gathered}
L_{1}=\left\{a^{m} b^{k} \mid m, k \geq 0\right\} \\
L_{2}=\left\{a^{m} b^{k} \mid m=k \text { and } m, k \geq 0\right\}
\end{gathered}
$$

(c) Write 5 distinct strings that belong to $L_{1} \cap L_{2}$. If such strings do not exist, explain why.

Answer:
$\lambda, a b, a a b b, a a a b b b, a a a a b b b b$
(Recall that $L_{1} \cap L_{2}=L_{2}$.)
(d) Write 5 distinct strings over alphabet $\{a, b\}$ that belong to $\overline{L_{1} \cup L_{2}}$ (the complement of $L_{1} \cup L_{2}$.) If such strings do not exist, explain why.
Answer:

$$
b a, a a b b a, b a b, b a a b b, a b a
$$

(Recall that $L_{1} \cup L_{2}=L_{1}$. Hence, $\overline{L_{1} \cup L_{2}}=\overline{L_{1}}$, which is exactly the set of strings that contain ba as a substring.)

