CS320: Problems and Solutions for Day 3, Winter 2023

Problem 1 Let $N=\{0,1, \ldots\}$ be the set of natural numbers and let L be the language defined by the regular expression:

$$
(a \cup \lambda)(a \cup \lambda) b^{*}
$$

Construct a bijection from L to N. If such bijection does not exist, prove it.
Answer: Observe that L is a union of 3 sets:

$$
b^{*} \cup a b^{*} \cup a a b^{*}
$$

which means that every string in L is of the form:

$$
a^{r} b^{q}, q \geq 0, r \in\{0,1,2\}
$$

Set $\{0,1,2\}$ is the set of all possible remainders in the division by 3 . We map $a^{r} b^{q}$ to that number that gives remainder r and quotient q when divided by 3:

$$
f: a^{r} b^{q} \rightarrow 3 q+r
$$

To see that f is surjective, note that every natural number has a quotient and a remainder in the division by 3 , and thereby has an original in L under f. To see that f is injective, observe that the representation by the pair (quotient, remainder) is unique. Two distinct strings from L differ in the number of a 's or in the number of b 's. Hence, their images differ in their quotients or in their remainders in the division by 3 , which suffices to guarantee that they are different.

Problem 2 Let:

$$
\Sigma=\{0,1\}
$$

and let L be the language defined by the regular expression:

$$
(0 \cup 1) 01
$$

Let N be the set of natural numbers.
State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)

Answer:

1. $|L|=2$, since $L=\{001,101\}$.
2. $\left|L^{*}\right|=\aleph_{0}$, i.e., L^{*} is infinite and countable.
3. $\left|L^{0}\right|=1$, since $L^{0}=\{\lambda\}$.
4. set of all strings of length 5 over Σ has 2^{5} elements.
5. set of all strings of finite length over Σ is infinite and countable.
6. set of subsets of Σ has $2^{2}=4$ elements.
7. set of subsets of Σ^{*} is infinite and uncountable.
8. set of all languages over Σ is infinite and uncountable.
9. set of all functions from N to Σ is infinite and uncountable.
10. set of regular expressions over Σ is infinite and countable.

Problem 3 (a) Give an example of a finite language that is not regular. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: Impossible, every finite language is regular.
(b) Give an example of a regular language that is not finite. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: \boldsymbol{a}^{*} is evidently regular because it has a regular expression, and also infinite because it contains a string of any length.
(c) Give an example of an infinite uncountable language. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: Impossible - every language is countable, since it is a set of finite sequences drawn from a countable set.
Problem 4 Let L be the language defined by the regular expression:

$$
(c \cup a b \cup b)^{*} b b(c \cup a b)
$$

(a) Write 10 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 10 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Answer:

$\in L$	$\notin L$
$b b c$	λ
$b b a b$	$b b$
$c b b c$	$b b a$
$a b b b c$	$b b c a$
$b b b c$	$b b b$
$c c a b b b b b c$	a
$b b c b b a b$	b
$b b a b b b a b$	$a b$
$c c b c b b a b$	$a a b b$
$c a b c b c b b a b$	$a b b a b$

Problem 5 Let L be a set of strings over alphabet $\{0,1\}$ such that

$$
L=\{w \mid w \neq 11 \wedge w \neq 111\}
$$

(a) Write 5 distinct strings that belong to L. If such strings do not exist, explain why.

Answer:

$$
\lambda, 0,1,00,01,10,000,001,010,011,100,101,110
$$

(b) Write 5 distinct strings over alphabet $\{0,1\}$ that do not belong to L. If such strings do not exist, explain why. Answer: It is impossible to find 5 such strings. Straightforwardly, by definition of L, there are only two strings over $\{0,1\}$ that do not belong to L :

$$
11,111
$$

(c) Write a regular expression that defines L. If such expression does not exist, explain why.

Answer:

$\lambda \cup 1 \cup(0 \cup 10 \cup 110 \cup 111(0 \cup 1))(0 \cup 1)^{*}$
Problem 6 Let L be the language defined by the regular expression:

$$
(a \cup b)(a \cup b)(a \cup b)^{*}
$$

(a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.

Answer:

$$
a a, a b, b a, b b, a a b, a b b, b a a, b b b
$$

(b) Write 8 distinct strings over alphabet $\{a, b\}$ that do not belong to L. If such strings do not exist, explain why.

Answer: By inspection of the regular expression, we conclude that L consists of all strings over $\{a, b\}$ that have length greater than or equal to 2 . Hence, there are only three strings over $\{a, b\}$, precisely those with length less than 2:

$$
\lambda, a, b
$$

that are not in L. Thus, it is impossible to list more than 3 of them.
Problem 7 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b)((a \cup b)(a \cup b))^{*}
$$

and let L_{2} be the language defined by the regular expression:

$$
(a \cup b)(a \cup b)(a \cup b)^{*}
$$

In your answers to the following questions, state cardinalities of finite sets by giving the exact numbers. For infinite sets, specify if they are countable or not.
(a) Let $S_{1}=L_{1} \cup L_{2}$. Write a regular expression that defines S_{1}. If such a regular expression does not exist, explain why.
Answer: Observe that L_{1} is the set of all strings of odd length over $\{a, b\}$, while L_{2} is the set of all strings of length greater than 1 over $\{a, b\}$. Their union S_{1} is the set of all strings of length greater than zero:

$$
(a \cup b)(a \cup b)^{*}
$$

(b) Let $S_{2}=L_{1} \backslash L_{2}$. Write a regular expression that defines S_{2}. If such a regular expression does not exist, explain why.
Answer: S_{2} is the set of strings of length equal to 1:

$$
(a \cup b)
$$

(c) Let $S_{3}=L_{1} \cap L_{2}$. Write a regular expression that defines S_{3}. If such a regular expression does not exist, explain why.
Answer: S_{3} is the set of strings of odd length, greater than 1:

$$
(a \cup b)(a \cup b)(a \cup b)((a \cup b)(a \cup b))^{*}
$$

(d) What is the cardinality of S_{1} ?

Answer: $\left|S_{1}\right|=\aleph_{0} ; S_{1}$ is infinite and countable.
(e) What is the cardinality of S_{2} ?

Answer: $\left|S_{2}\right|=2$.
(f) What is the cardinality of S_{3} ?

Answer: $\left|S_{3}\right|=\aleph_{0} ; S_{3}$ is infinite and countable.
Problem 8 (a) Let L_{1} be the set of all strings of length two or more over alphabet $\{a, b\}$ in which all the a 's follow all the b 's. Write 5 distinct strings that belong to L_{1}. If such strings do not exist, explain why.
Answer:

$$
a a, b b, b a, b b b, b a a
$$

(b) Write a regular expression that defines L_{1}. If such a regular expression does not exist, explain why.

Answer:

$$
b b b^{*} a^{*} \cup b a a^{*} \cup a a a^{*}
$$

(c) Let L_{2} be the set of all strings over alphabet $\{a, b, c\}$ that begin with c, end with b, and contain exactly two a 's. Write 5 distinct strings that belong to L_{2}. If such strings do not exist, explain why.
Answer:

$$
c a a b, c c a a b, c a b a b, c c a b a b, c b a b a b b
$$

(d) Write a regular expression that defines L_{2}. If such a regular expression does not exist, explain why.

Answer:

$$
c(b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*} b
$$

Problem 9 (a) Let L_{1} be the set of all strings over alphabet $\{0,1\}$ that do not contain the substring 11. Write a regular expression that defines L_{1}. If such regular expression does not exist, explain why.
Answer:

$$
(0 \cup 10)^{*}(1 \cup \lambda)
$$

(b) Let L_{2} be the set of all strings over alphabet $\{0,1\}$ that contain an odd number of 1 's.

Write a regular expression that defines L_{2}. If such regular expression does not exist, explain why.
Answer:

$$
0^{*} 10^{*}\left(0^{*} 10^{*} 10^{*}\right)^{*}
$$

Problem 10 (a) Let L_{1} be the set of all strings over alphabet $\{0,1\}$ that contain exactly two zeros. Write a regular expression that defines L_{1}. If such regular expression does not exist, explain why.
Answer:

1*01*01*

(b) Let L_{2} be the set of all strings over alphabet $\{0,1\}$ that contain at least two zeros.

Write a regular expression that defines L_{2}. If such regular expression does not exist, explain why.
Answer:

$$
(0 \cup 1)^{*} 0(0 \cup 1)^{*} 0(0 \cup 1)^{*}
$$

(c) Let L_{3} be the set of all strings over alphabet $\{0,1\}$ that contain at most two zeros.

Write a regular expression that defines L_{3}. If such regular expression does not exist, explain why.
Answer:

$$
1^{*}(0 \cup \lambda) 1^{*}(0 \cup \lambda) 1^{*}
$$

Problem 11 (a) Let L be the set of strings over the alphabet $\{0,1\}$ whose first symbol is different from the last symbol. Write a regular expression that defines L. If such a regular expression does not exist, prove it.
Answer:

$$
0(0 \cup 1)^{*} 1 \cup 1(0 \cup 1)^{*} 0
$$

(b) Let \mathcal{R} be the class of languages that can be represented by a regular expression, and let \mathcal{N} be the class of languages that cannot be represented by a regular expression. State the cardinalities of \mathcal{R} and \mathcal{N}, and compare them.
Answer: Class \mathcal{R} is infinite and countable:

$$
|\mathcal{R}|=\aleph_{0}
$$

Class \mathcal{N} is infinite and uncountable; its cardinality is equal to the cardinality of the set of subsets of an infinite countable set:

$$
|\mathcal{N}|=2^{\aleph_{0}}
$$

Hence:

$$
|\mathcal{N}|>|\mathcal{R}|
$$

Problem 12 Let L be the set of all strings over alphabet $\{a, b, c\}$ whose first letter occurs at least once again in the string.
Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Answer:

$$
\begin{aligned}
& a(b \cup c)^{*} a(a \cup b \cup c)^{*} \\
& b(a \cup c)^{*} b(a \cup b \cup c)^{*} \\
& \bigcup^{\bigcup} \\
& c(a \cup b)^{*} c(a \cup b \cup c)^{*}
\end{aligned}
$$

