## CS320: Problems and Solutions for Day 13, Winter 2023

Problem 1 (a) Let $G$ be a grammar that defines the $\mathrm{C}++$ programming language. Describe the algorithm that should be employed by a program that solves the following problem:
Input: An arbitrary string $p$ of characters from the legal $\mathrm{C}++$ character set.
Question: Does $p$ represent a valid $\mathrm{C}++$ program?
Explain your answer. If such algorithm does not exist, prove it.
Answer: The program should simulate the push-down automaton which accepts all strings that are valid $\mathrm{C}++$ programs; this automaton is obtained by an algorithmic conversion of the grammar $G$.
(b) Let $G$ be a grammar that defines the $\mathrm{C}++$ programming language. In an introductory programming class, students write C++ programs for verifying if a sequence of five integers is sorted. Describe the algorithm that should be employed by a program that solves the following problem:
Input: An arbitrary student program $p$ and an arbitrary sequence $s$ of five integers.
Question: Does $p$ correctly verify $s$ ?
Explain your answer. If such algorithm does not exist, prove it.
Answer: This algorithm does not exist, by Rice's Theorem, even for a fixed $s$. Let $r$ be any program that correctly verifies if a given fixed sequence $s$ of five integers is sorted. (Observe that, for a given fixed sequence, $r$ may simply write the answer and do nothing else.) The property of being equivalent to $r$ is non-trivial, since $r$ has it and many other programs do not.
(c) Let $G$ be a grammar that defines the $C++$ programming language. In an introductory programming class, students write C++ programs for sorting a sequence of integers of arbitrary length. There are only two grades: pass and fail. A student program passes if it correctly sorts the benchmark input sequence within two seconds of processor time; otherwise the program receives the grade fail. Describe the algorithm that should be employed by a program that solves the following problem:
Input: An arbitrary student program $p$ and an arbitrary integer sequence $s$.
Question: Does $p$ pass if tested on $s$ as the benchmark?
Explain your answer. If such algorithm does not exist, prove it.
Answer: Execute the student program $p$ on input $s$ for two seconds. After two seconds have expired, if the program $p$ has arrived to the correct answer, output pass, else output fail.
(d) Let $G$ be a grammar that defines the $\mathrm{C}++$ programming language, as implemented by a major software vendor, named $X$, and let $P$ be the compiler manufactured by this vendor. At a major university, students are writing $\mathrm{C}++$ compilers in their software design courses, as programming exercises. Company $X$ is interested in hiring students that write good compilers. Company $X$ evaluates a compiler as good if it compiles the same set of programs as its own compiler $P$. Describe the algorithm that should be employed by a program that solves the following problem:
Input: Compiler $P$ developed by $X$, and an arbitrary compiler $P_{1}$ written by a student.
Question: Is $P_{1}$ a good compiler?
Explain your answer. If such algorithm does not exist, prove it.
Answer: This algorithm does not exist, by Rice's Theorem, even for a fixed $P$. The property of being equal to the set of strings accepted by $P$ is non-trivial, and we cannot decide if the language accepted by $P_{1}$ has this property.
(e) The scenario is identical to that given in part (d), except that Company $X$ evaluates a compiler as good if it compiles the same set of programs as its own compiler $P$ and, additionally, is never slower than $P$ by a factor greater than 2. Describe the algorithm that should be employed by a program that solves the following problem:
Input: Compiler $P$ developed by $X$, and an arbitrary compiler $P_{1}$ written by a student.
Question: Is $P_{1}$ a good compiler?
Explain your answer. If such algorithm does not exist, prove it.
Answer: This algorithm does not exist, for the reasons stated in part (d) - the new condition is a conjunction of two non-trivial properties.

Problem 2 (a)
Let $M_{1}$ be a Turing machine that decides language $L_{1}$; let $M_{2}$ be a Turing machine that accepts language $L_{2}$;
let $M_{3}$ be a Turing machine that accepts language $L_{3}$.

Describe a Turing machine $M$ that accepts language:

$$
L_{1} \cap\left(L_{2} \cup L_{3}\right)
$$

If such Turing machine does not exist, prove it.
Answer: $M$ simulates $M_{1}$ until $M_{1}$ halts. If $M_{1}$ rejects then $M$ also rejects. If $M_{1}$ accepts them $M$ continues as follows. $M$ simulates both $M_{2}$ and $M_{3}$ in parallel and halts and accepts if and when any of them accepts.
(b)

Let $M_{1}$ be a Turing machine that accepts language $L_{1}$;
let $M_{2}$ be a Turing machine that decides language $L_{2}$;
let $M_{3}$ be a Turing machine that decides language $L_{3}$.

Describe a Turing machine $M$ that accepts language:

$$
L_{1} \backslash\left(L_{2} \cap L_{3}\right)
$$

If such Turing machine does not exist, prove it.
Answer: $M$ simulates both $M_{2}$ and $M_{3}$ in parallel until they both halt. If both $M_{2}$ and $M_{3}$ accept, then $M$ rejects. Otherwise, $M$ simulates $M_{1}$ and accepts if and when $M_{1}$ accepts.
(c)

Let $M_{1}$ be a Turing machine that decides language $L_{1}$;
let $M_{2}$ be a Turing machine that accepts language $L_{2}$;
let $M_{3}$ be a Turing machine that accepts language $L_{3}$.

Describe a Turing machine $M$ that decides language:

$$
L_{1} \backslash\left(L_{2} \cap L_{3}\right)
$$

If such Turing machine does not exist, prove it.
Answer: Impossible. If $M$ existed, we could set:

$$
\begin{aligned}
& L_{1}=\Sigma^{*} \\
& L_{2}=L_{H} \\
& L_{3}=\Sigma^{*}
\end{aligned}
$$

where:

$$
L_{H}=\{(M, w) \mid(M, w) \searrow\}
$$

yielding:

$$
L_{2} \cap L_{3}=L_{H}
$$

Hence, $M$ would decide:

$$
L \backslash L_{H}=\overline{L_{H}}
$$

which is impossible, since $\overline{L_{H}}$ is not even recursively enumerable.

Problem 3 Let $M_{1}$ and $M_{2}$ be two arbitrary Turing machines over input alphabet $\Sigma$. For each of the following six questions, determine if the answer is always yes, always no, or sometimes yes. Justify your answer in each case.
(a) Is $L\left(M_{1}\right)=\varnothing$ ?

Advice for Answer: Sometimes.
(b) Is $L\left(M_{2}\right)=\Sigma^{*}$ ?

Advice for Answer: Sometimes.
(c) Is $L\left(M_{1}\right)$ recursive?

Advice for Answer: Sometimes.
(d) Is $L\left(M_{2}\right)$ recursively enumerable?

Advice for Answer: Always.
(e) Is $L\left(M_{1}\right)=L\left(M_{2}\right)$ ?

Advice for Answer: Sometimes.
(f) Is $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ recursively enumerable?

Advice for Answer: Always.
Problem 4 Let $L$ be a non-recursive language over the English alphabet $\{a, b, c, \ldots, x, y, z\}$, accepted by a Turing machine $M$. Describe a Turing machine $M^{\prime}$ such that $M^{\prime}$ writes error on its tape and halts if and only if its input string does not belong to $L$. If such $M^{\prime}$ does not exist, explain why.
Answer: $M^{\prime}$ does not exist, lest it would accept $\bar{L}$. This would mean that $\bar{L}$ is recursively enumerable. However, since $L$ is not recursive, its complement $\bar{L}$ cannot be recursively enumerable.

