CS320: Problems and Solutions for Day 12, Winter 2023

Problem 1 Let L be the language defined by the regular expression:

$$
(b b \cup c c)^{*}((a \cup b a) c d)^{*}
$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.
Answer: $G=\{V, \Sigma, P, S\}$, where: $\Sigma=\{a, b, c, d\}, V=\{S, A, B, D\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow A A|\lambda| b b \mid c c \\
& B \rightarrow B B|\lambda| D c d \\
& D \rightarrow a \mid b a
\end{aligned}
$$

(b) Is it possible to write a computer program (algorithm) that operates as follows:

Input: An arbitrary Turing machine ζ accepting strings over $\{a, b, c, d\}$.
Output: yes if ζ accepts L and no if ζ does not accept L.
Explain your answer briefly.
Answer: No. The property is equal to L is a non-trivial property, since (evidently) language L has it, and (for example) the empty set \varnothing does not have it. By Rice's theorem, there is no algorithm that determines if a language accepted by a given Turing machine has a given non-trivial property.

Problem 2 Does there exist an algorithm that solves the following problem:
Input: An arbitrary context-free grammar G and an arbitrary compiler \mathcal{P}.
Question: Is the language specified by G equal to the set of programs that compile under \mathcal{P} ?
Explain your answer briefly.
Answer: No. Compiler \mathcal{P} is a program written for a general purpose computer, which is equivalent to a Turing Machine. Hence, the question is equivalent to asking if an arbitrary recursively enumerable language has the property: is equal to $L(G)$
which is a non-trivial property. By Rice's Theorem, this question does not have an algorithmic answer.
Problem 3 Consider the Turing machine:

$$
M=(Q, \Sigma, \Gamma, \delta, p)
$$

such that: $Q=\{p, q, s, t, e\} ; \Sigma=\{a, b, c\}$;
$\Gamma=\{B, X, Y, Z, a, b, c\}$.
and δ is defined by the following transition set:

$$
\begin{aligned}
& {[p, a, q, X, R]} \\
& {[p, b, q, Y, R]} \\
& {[p, c, q, Z, R]} \\
& {[q, a, q, a, R]} \\
& {[q, b, q, b, R]} \\
& {[q, c, q, c, R]} \\
& {[q, B, s, B, L]} \\
& {[s, X, t, B, R]} \\
& {[s, Y, t, B, R]} \\
& {[s, Z, t, B, R]} \\
& {[s, a, e, a, R]} \\
& {[s, b, e, b, R]} \\
& {[s, c, e, c, R]} \\
& {[e, B, e, B, R]}
\end{aligned}
$$

(where B is the designated blank symbol.)
Let L be the set of strings accepted by M (by halting.)
(a) Draw a state-transition graph of a finite automaton M^{\prime} that accepts L. If such an automaton does not exist, prove it.
Answer: Observe that L is given by the regular expression:
$a \cup b \cup c \cup \lambda$
Hence, the following automaton accepts L.

(b) Write a complete formal definition of a Turing machine M_{1} that accepts the language L and halts on every input. In short:

$$
(\tau \in L) \Longrightarrow\left(M_{1}(\tau) \searrow \text { and accept }\right)
$$

and also:

$$
(\tau \notin L) \Longrightarrow\left(M_{1}(\tau) \searrow \text { and reject }\right)
$$

Your construction should be readable as well as accurate; you may comment it. If such a Turing machine does not exist, prove it.
Answer: We employ the algorithmic conversion to obtain M_{1} from the deterministic finite automaton constructed in the answer to part (a).

$$
M_{1}=(Q, \Sigma, \Gamma, \delta, x, F)
$$

where: $Q=\{x, y, z\} ; \Sigma=\{a, b, c\}$;
$\Gamma=\{B, a, b, c\} ; F=\{x, y\}$.
and δ is defined by the following transition set:

$$
\begin{aligned}
& {[x, a, y, B, R]} \\
& {[x, b, y, B, R]} \\
& {[x, c, y, B, R]} \\
& {[y, a, z, B, R]} \\
& {[y, b, z, B, R]} \\
& {[y, c, z, B, R]} \\
& \\
& {[z, a, z, B, R]} \\
& {[z, b, z, B, R]} \\
& {[z, c, z, B, R]}
\end{aligned}
$$

(where B is the designated blank symbol.)
(c) Write a complete formal definition of a Turing machine M_{2} that halts on every input and recognizes Turing machines that accept L. In short:

$$
(L(\eta)=L) \Longrightarrow\left(M_{2}(\eta) \searrow \text { and accept }\right)
$$

and also:

$$
(L(\eta) \neq L) \Longrightarrow\left(M_{2}(\eta) \searrow \text { and reject }\right)
$$

Your construction should be readable as well as accurate; you may comment it. If such a Turing machine does not exist, prove it.
Answer: Such Turing machine does not exist, since it would decide if an arbitrary Turing machine accepts a language equal to L. The property "is equal to L " is non-trivial-hence, by Rice's Theorem it is undecidable whether it holds for the language accepted by an arbitrary Turing machine.

