CS320: Problems for Day 1, Winter 2023

Problem $1 \quad$ The sets A and B are defined as follows:

$$
\begin{aligned}
& A=\{a, b, c, d, e\} \\
& B=\{0,1,2\}
\end{aligned}
$$

(a) How many functions are there from set A to the set B ?

Answer: There are $|B|^{|A|}=3^{5}=243$ functions from set A to set B.
(b) Construct a function $f_{1}: A \rightarrow B$. If such a function does not exist, explain why.

Answer:

$$
f_{1}(a)=f_{1}(b)=f_{1}(c)=f_{1}(d)=f_{1}(e)=0
$$

(c) Construct an injective function $f_{2}: A \rightarrow B$. If such a function does not exist, explain why.

Answer: Since $|A|=5>3=|B|$, there does not exist an injection from set A to set B.
(d) Construct a surjective function $f_{3}: A \rightarrow B$. If such a function does not exist, explain why.

Answer:

$$
f_{3}(a)=f_{3}(b)=f_{3}(c)=0, f_{3}(d)=1, f_{3}(e)=2
$$

(e) How many partial functions are there from set A to the set B ?

Answer: A partial function f can have 4 effects on an element $a \in A$. (Either $f(a)$ is one of the 3 elements in B, or it is undefined.) Therefore, there are $(|B|+1)^{|A|}=4^{5}=1024$ partial functions from set A to set B.

Problem 2 Let sets A and B be defined as follows:

$$
\begin{aligned}
& A=\{a, b, c, d, e\} \\
& B=\{0,1,2\}
\end{aligned}
$$

and let N be the set of natural numbers.
(a) Construct an injective function f_{1} from B to $A \times B$. If such a function does not exist, explain why.

Answer: Since $|A \times B|=5 \times 3=15$, there are exactly $15 \times 14 \times 13=2730$ different injections from B to $A \times B$. Here is one of them:

$$
f_{1}(x)=(a, x)
$$

(b) Construct a surjective function f_{2} from A to a proper subset of N. If such a function does not exist, explain why.
Answer: Choose set $\{6\} \subset N$ to be the range of f_{2} and define f_{2} as follows:

$$
f_{2}(x)=6
$$

(c) Construct an injective function f_{3} from A to $\mathcal{P}(B)$. If such a function does not exist, explain why.

Answer: Since $|\mathcal{P}(B)|=2^{3}=8$, there are exactly $8 \times 7 \times 6 \times 5 \times 4=6720$ different injections from A to $\mathcal{P}(B)$. Here is one of them:

x	$f_{3}(x)$
a	\varnothing
b	$\{0\}$
c	$\{1\}$
d	$\{2\}$
e	$\{0,1\}$

(d) Construct a proper subset S_{1} of $\mathcal{P}(B)$ which is infinite. If such a set does not exist, explain why.

Answer: Impossible $-\mathcal{P}(B)$ is a finite set (with 8 elements) and cannot have an infinite subset.
(e) Construct a proper subset S_{2} of N which is infinite. If such a set does not exist, explain why.

Answer: For example:
The set of even natural numbers:

$$
S_{2}=\{2 x \mid x \in N\}
$$

