CS320: Problems for Day 8, Winter 2023

Problem 1 Let M be the finite automaton represented by the state diagram on Figure 1, and let L be the language accepted by M.
Write a complete formal definition or a state-transition graph of a deterministic finite automaton M^{\prime} that accepts L and show your work. If such automaton does not exist, prove it.

Figure 1:

Problem 2 Let M be the finite automaton represented by the state diagram on Figure 2, and let L be the language accepted by M.

Figure 2:
(a) Is the finite automaton M deterministic? Justify briefly your answer.
(b) If M is not deterministic, construct a deterministic finite automaton M^{\prime} that accepts L and show your work. If such an automaton M^{\prime} does not exist, explain why.

Problem 3 Let L be the language defined by the regular expression

$$
b\left(a \cup b^{*}\left(\left(c^{*} \cup(c b)^{*}\right) a c\right)^{*}\right) b
$$

(a) Construct a finite automaton M that accepts L. If such an automaton M does not exist, explain why.
(b) If you constructed an automaton M in your answer to part (a), is M deterministic? Justify briefly your answer.

Problem 4 Let M be the finite automaton represented by the state diagram on Figure 3 , and let L be the language accepted by M.

Figure 3:
Construct a state-transition graph of a deterministic finite automaton M_{1} that accepts L, and show your work. If such automaton does not exist, prove it.

Problem 5 Let L be the language accepted by the finite automaton $M=(Q, \Sigma, \delta, q,\{f\})$, where $\Sigma=\{a\}$, $Q=\{p, q, r, s, t, v, w, x, y, z, f\}$,
and δ is given by the following table:

	a	λ
p	$\{z\}$	\varnothing
q	$\{t, r\}$	$\{s\}$
r	\varnothing	$\{q, t\}$
s	\varnothing	$\{w\}$
t	$\{z, y\}$	$\{p, w\}$
v	$\{x\}$	$\{r\}$
w	$\{y\}$	\varnothing
x	$\{p\}$	$\{v\}$
y	$\{p\}$	$\{f\}$
z	\varnothing	$\{v\}$
f	\varnothing	\varnothing

Compute the λ-closure of state v.

Problem 6 Let M be the finite automaton represented by the state diagram on Figure 4, and let L be the language accepted by M.

Figure 4:
Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, prove it.

