CS320: Problems for Day 4, Winter 2023

Problem 1 Let *L* be a language over alphabet $\{a, b\}$ with the following property:

For every word $w \in L$:

if |w| is odd, then the middle symbol of w is a;

if |w| is even, then w ends with bb.

Write a complete formal definition of a context-free grammar G that generates L. If such grammar G does not exist, explain why.

Problem 2 Construct a context-free grammar G over alphabet $\{a, b, c\}$ that generates the language

$$L(G) = \{a^{m}b^{n}c^{i} \mid m + n < i\}$$

where m, n, i are non-negative integers.

Problem 3 (a) Does there exist a pair of languages L_1 and L_2 such that all of the following three conditions hold?

- L_1 is regular;
- $L_2 \subseteq L_1;$
- L_2 is not regular, but is context-free.

If your answer to this part is "no" go to part (d), else complete parts (b)–(c).

(b) Write a regular expression that defines L_1 (as in part (a)).

(c) Write a complete formal definition of a context-free grammar that generates L_2 (as in part (a)). Describe L_2 briefly, using words and set-notation.

(d) Explain why such a pair of languages L_1 and L_2 (as in part (a)) does not exist.

Problem 4 Let *L* be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A, B\}$, and the production set *P* is:

$$S \to aSb \mid A$$
$$A \to cAb \mid B$$
$$B \to cb$$

- (a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.
- (b) Write 8 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 5 Write a complete formal definition of a context-free grammar G that generates language L, defined as follows:

$$L = \{a^m b^n ac \mid m \ge 0, n > m\}$$

If such a grammar does not exist, explain why.

Problem 6 Let:

$$L = \{a^m b^m \mid m \ge 0\}$$

Write a complete formal definition of a context-free grammar that generates the <u>complement</u> of L in $\{a, b\}^*$. If such grammar does not exist, prove it.

Problem 7 Let L_1 be the language defined by the regular expression:

 $(a\cup b)^*\,c\,(a\cup b)^*\,c\,(a\cup b)^*\,c\,(a\cup b)^*$

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A\}$, and the production set P is:

$$\begin{array}{c} S \to AAS \mid \lambda \\ A \to a \mid b \mid c \end{array}$$

(a) Write 5 distinct strings that belong to L_1 and do not belong to L_2 (belong to $L_1 \cap \overline{L_2}$). If such strings do not exist, explain why.

(b) Write 5 distinct strings that belong to L_2 and do not belong to L_1 (belong to $\overline{L_1} \cap L_2$). If such strings do not exist, explain why.

(c) Write 5 distinct strings that belong to L_1 and L_2 (belong to $L_1 \cap L_2$). If such strings do not exist, explain why.

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_1 and do not belong to L_2 (belong to $\overline{L_1} \cap \overline{L_2}$). If such strings do not exist, explain why.

Problem 8 (a) Let L_1 be the set of all strings over alphabet $\{a, b, d\}$ that do not contain the substring *dba*.

Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such a grammar does not exist, explain why.

(b) Let L_2 be the set of all strings over alphabet $\{a, b\}$ that have even length or contain an even number of a's.

Write a complete formal definition of a context-free grammar G_2 that generates language L_2 . If such a grammar does not exist, explain why.

Problem 9 Let L_1 be the language defined by the regular expression:

$$(a \cup ba \cup ca)^* (b \cup c)$$

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}$, $V = \{S, A, B\}$, and the production set P is:

$$\begin{array}{l} S \rightarrow ABABA \\ A \rightarrow AA \mid a \mid c \mid \lambda \\ B \rightarrow b \end{array}$$

(a) Write 5 distinct strings that belong to L_1 and do not belong to L_2 (belong to $L_1 \cap \overline{L_2}$). If such strings do not exist, explain why.

(b) Write 5 distinct strings that belong to L_2 and do not belong to L_1 (belong to $\overline{L_1} \cap L_2$). If such strings do not exist, explain why.

(c) Write 5 distinct strings that belong to L_1 and L_2 (belong to $L_1 \cap L_2$). If such strings do not exist, explain why.

(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_1 and do not belong to L_2 (belong to $\overline{L_1} \cap \overline{L_2}$). If such strings do not exist, explain why.

Problem 10 Let *L* be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b, c\}, V = \{S, A, B, D\}$, and *P* is:

$$\begin{array}{l} S \rightarrow AB \mid D \\ A \rightarrow AA \mid \lambda \mid abc \\ B \rightarrow bB \mid \lambda \\ D \rightarrow aaD \mid bbbD \mid cD \mid \lambda \end{array}$$

Write a regular expression that defines L. If such regular expression does not exist, prove it.

Problem 11 Write a complete formal definition of a context-free grammar $G = \{V, \Sigma, P, S\}$ over alphabet $\{a, b, c\}$ such that G generates the language of all strings whose length is even or gives remainder 1 if divided by 3. If such grammar does not exist, prove it.

Problem 12 Let L_1 be the language defined by the regular expression:

Let L_2 be the language generated by the context-free grammar $G = \{V, \Sigma, P, S\}$, where $\Sigma = \{a, b\}$, $V = \{S\}$, and the production set P is:

$$S \to aSa \mid bSb \mid a \mid b \mid \lambda$$

(a) Write a regular expression that defines $L_1 \cap L_2$.

If such regular expression does not exist, explain why.

(b) What is the cardinality of $L_1 \cap L_2$? (If possible, state the exact number. If the set is infinite, specify if it is countable or not.)

- (c) Compare the cardinalities of L_1 and L_2 , and explain which one (if any) is greater.
- (d) Compare the cardinalities of $L_1 \cup L_2$ and $L_1 \cap L_2$, and explain which one (if any) is greater.

Problem 13 (a) Let L_1 be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$L_1 = \{a^n b^m c^k d^{m+2} e^{n+3} \mid k, n, m \ge 0\}$$

Write a complete formal definition of a context-free grammar G_1 that generates language L_1 . If such grammar does not exist, explain why.

(b) Let L_2 be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$L_2 = \{a^{2n}b^{3n}c^{k+2}d^{3k+1}e^{m+3}a^{2m+5} \mid k, n, m \ge 0\}$$

Write a complete formal definition of a context-free grammar G_2 that generates language L_2 . If such grammar does not exist, explain why.

Problem 14 Let:

$$L = \{ a^{\ell} b^{2j} c^k d^{2m} \mid \ell, j, k, m \ge 0 \}$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) Write a regular expression that defines L. If such regular expression does not exist, prove it.

Problem 15 (a) Let:

$$L = \{a^{i}b^{j}c^{k}d^{m} \mid i = j + k \text{ and } m = 2\ell, i, j, k, m, \ell \ge 0\}$$

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.

(b) What is the cardinality of the set of context-free grammars? Answer by giving the exact number (if this set is finite) or by specifying if it is countable or uncountable.

Problem 16 (a) Let *L* be the language defined by the regular expression:

$$(a (ca \cup da)^* b) \cup (b (ca \cup da)^* a)$$

Write a complete formal definition of a context-free grammar G_1 that generates language L. If such grammar does not exist, explain why.

(b) Let L be the language defined in part (a).

Write a complete formal definition of a context-free grammar G_2 that generates language L^* . If such grammar does not exist, explain why.

Problem 17 Let L be the set of strings over alphabet $\Sigma = \{a, b, c\}$ defined as follows:

$$L = \{a^m b^k c^\ell \mid m, k, \ell \ge 0 \land m = k + \ell\}$$

- 1. Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, explain why.
- 2. List six different strings that belong to \overline{L} (where $\overline{L} = \Sigma \setminus L$). If this is impossible, explain why.

3. List six different strings that belong to

$\overline{L} \cap a^*b^*c^*$

(where $\overline{L} = \Sigma \setminus L$). If this is impossible, explain why.

4. State the cardinalities of L and \overline{L} , and determine which one is greater (if any.) If possible, give exact numbers, otherwise state if sets are countable or not. Explain your answer briefly.

Problem 18 Let L_1 be the language defined by the regular expression:

 a^*b^*

Let L_2 be the language generated by the context-free grammar $G = (V, \Sigma, P, S)$, where $\Sigma = \{a, b\}, V = \{S\}$, and the production set P is:

 $S \to aSb \mid \lambda$

- (a) Write 5 distinct strings that belong to $L_1 \setminus L_2$. If such strings do not exist, explain why.
- (b) Write 5 distinct strings that belong to $L_2 \setminus L_1$. If such strings do not exist, explain why.
- (c) Write 5 distinct strings that belong to $L_1 \cap L_2$. If such strings do not exist, explain why.

(d) Write 5 distinct strings over alphabet $\{a, b\}$ that belong to $\overline{L_1 \cup L_2}$ (the complement of $L_1 \cup L_2$.) If such strings do not exist, explain why.