CS320: Problems for Day 4, Winter 2023

Problem 1 Let L be a language over alphabet $\{a, b\}$ with the following property:
For every word $w \in L$:
if $|w|$ is odd, then the middle symbol of w is a;
if $|w|$ is even, then w ends with $b b$.
Write a complete formal definition of a context-free grammar G that generates L. If such grammar G does not exist, explain why.

Problem 2 Construct a context-free grammar G over alphabet $\{a, b, c\}$ that generates the language

$$
L(G)=\left\{a^{m} b^{n} c^{i} \mid m+n<i\right\}
$$

where m, n, i are non-negative integers.
Problem 3 (a) Does there exist a pair of languages L_{1} and L_{2} such that all of the following three conditions hold?

- L_{1} is regular;
- $L_{2} \subseteq L_{1}$;
- L_{2} is not regular, but is context-free.

If your answer to this part is "no" go to part (d), else complete parts (b)-(c).
(b) Write a regular expression that defines L_{1} (as in part (a)).
(c) Write a complete formal definition of a context-free grammar that generates L_{2} (as in part (a)). Describe L_{2} briefly, using words and set-notation.
(d) Explain why such a pair of languages L_{1} and L_{2} (as in part (a)) does not exist.

Problem 4 Let L be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow a S b \mid A \\
& A \rightarrow c A b \mid B \\
& B \rightarrow c b
\end{aligned}
$$

(a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 8 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 5 Write a complete formal definition of a context-free grammar G that generates language L, defined as follows:

$$
L=\left\{a^{m} b^{n} a c \mid m \geq 0, n>m\right\}
$$

If such a grammar does not exist, explain why.

Problem 6 Let:

$$
L=\left\{a^{m} b^{m} \mid m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar that generates the complement of L in $\{a, b\}^{*}$. If such grammar does not exist, prove it.

Problem 7 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b)^{*} c(a \cup b)^{*} c(a \cup b)^{*} c(a \cup b)^{*}
$$

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A A S \mid \lambda \\
& A \rightarrow a|b| c
\end{aligned}
$$

(a) Write 5 distinct strings that belong to L_{1} and do not belong to L_{2} (belong to $L_{1} \cap \overline{L_{2}}$). If such strings do not exist, explain why.
(b) Write 5 distinct strings that belong to L_{2} and do not belong to L_{1} (belong to $\overline{L_{1}} \cap L_{2}$). If such strings do not exist, explain why.
(c) Write 5 distinct strings that belong to L_{1} and L_{2} (belong to $L_{1} \cap L_{2}$). If such strings do not exist, explain why.
(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_{1} and do not belong to L_{2} (belong to $\left.\overline{L_{1}} \cap \overline{L_{2}}\right)$. If such strings do not exist, explain why.

Problem 8 (a) Let L_{1} be the set of all strings over alphabet $\{a, b, d\}$ that do not contain the substring $d b a$.
Write a complete formal definition of a context-free grammar G_{1} that generates language L_{1}. If such a grammar does not exist, explain why.
(b) Let L_{2} be the set of all strings over alphabet $\{a, b\}$ that have even length or contain an even number of a 's.

Write a complete formal definition of a context-free grammar G_{2} that generates language L_{2}. If such a grammar does not exist, explain why.

Problem 9 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b a \cup c a)^{*}(b \cup c)
$$

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}$, $V=\{S, A, B\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow A B A B A \\
& A \rightarrow A A|a| c \mid \lambda \\
& B \rightarrow b
\end{aligned}
$$

(a) Write 5 distinct strings that belong to L_{1} and do not belong to L_{2} (belong to $L_{1} \cap \overline{L_{2}}$). If such strings do not exist, explain why.
(b) Write 5 distinct strings that belong to L_{2} and do not belong to L_{1} (belong to $\overline{L_{1}} \cap L_{2}$). If such strings do not exist, explain why.
(c) Write 5 distinct strings that belong to L_{1} and L_{2} (belong to $L_{1} \cap L_{2}$). If such strings do not exist, explain why.
(d) Write 5 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L_{1} and do not belong to L_{2} (belong to $\left.\overline{L_{1}} \cap \overline{L_{2}}\right)$. If such strings do not exist, explain why.

Problem 10 Let L be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b, c\}, V=\{S, A, B, D\}$, and P is:

$$
\begin{aligned}
& S \rightarrow A B \mid D \\
& A \rightarrow A A|\lambda| a b c \\
& B \rightarrow b B \mid \lambda \\
& D \rightarrow a a D|b b b D| c D \mid \lambda
\end{aligned}
$$

Write a regular expression that defines L. If such regular expression does not exist, prove it.
Problem 11 Write a complete formal definition of a context-free grammar $G=\{V, \Sigma, P, S\}$ over alphabet $\{a, b, c\}$ such that G generates the language of all strings whose length is even or gives remainder 1 if divided by 3 . If such grammar does not exist, prove it.

Problem 12 Let L_{1} be the language defined by the regular expression:

Let L_{2} be the language generated by the context-free grammar $G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b\}, V=\{S\}$, and the production set P is:

$$
S \rightarrow a S a|b S b| a|b| \lambda
$$

(a) Write a regular expression that defines $L_{1} \cap L_{2}$.

If such regular expression does not exist, explain why.
(b) What is the cardinality of $L_{1} \cap L_{2}$? (If possible, state the exact number. If the set is infinite, specify if it is countable or not.)
(c) Compare the cardinalities of L_{1} and L_{2}, and explain which one (if any) is greater.
(d) Compare the cardinalities of $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$, and explain which one (if any) is greater.

Problem 13 (a) Let L_{1} be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$
L_{1}=\left\{a^{n} b^{m} c^{k} d^{m+2} e^{n+3} \mid k, n, m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar G_{1} that generates language L_{1}. If such grammar does not exist, explain why.
(b) Let L_{2} be a language over alphabet $\{a, b, c, d, e\}$, defined as follows:

$$
L_{2}=\left\{a^{2 n} b^{3 n} c^{k+2} d^{3 k+1} e^{m+3} a^{2 m+5} \mid k, n, m \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar G_{2} that generates language L_{2}. If such grammar does not exist, explain why.

Problem 14 Let:

$$
L=\left\{a^{\ell} b^{2 j} c^{k} d^{2 m} \mid \ell, j, k, m \geq 0\right\}
$$

(a) Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.
(b) Write a regular expression that defines L. If such regular expression does not exist, prove it.

Problem 15 (a) Let:

$$
L=\left\{a^{i} b^{j} c^{k} d^{m} \mid i=j+k \text { and } m=2 \ell, i, j, k, m, \ell \geq 0\right\}
$$

Write a complete formal definition of a context-free grammar that generates L. If such grammar does not exist, prove it.
(b) What is the cardinality of the set of context-free grammars? Answer by giving the exact number (if this set is finite) or by specifying if it is countable or uncountable.

Problem 16 (a) Let L be the language defined by the regular expression:

$$
\left(a(c a \cup d a)^{*} b\right) \cup\left(b(c a \cup d a)^{*} a\right)
$$

Write a complete formal definition of a context-free grammar G_{1} that generates language L. If such grammar does not exist, explain why.
(b) Let L be the language defined in part (a).

Write a complete formal definition of a context-free grammar G_{2} that generates language L^{*}. If such grammar does not exist, explain why.

Problem 17 Let L be the set of strings over alphabet $\Sigma=\{a, b, c\}$ defined as follows:

$$
L=\left\{a^{m} b^{k} c^{\ell} \mid m, k, \ell \geq 0 \wedge m=k+\ell\right\}
$$

1. Write a complete formal definition of a context-free grammar G that generates L. If such grammar does not exist, explain why.
2. List six different strings that belong to \bar{L} (where $\bar{L}=\Sigma \backslash L$). If this is impossible, explain why.
3. List six different strings that belong to

$$
\bar{L} \cap a^{*} b^{*} c^{*}
$$

(where $\bar{L}=\Sigma \backslash L$). If this is impossible, explain why.
4. State the cardinalities of L and \bar{L}, and determine which one is greater (if any.) If possible, give exact numbers, otherwise state if sets are countable or not. Explain your answer briefly.

Problem 18 Let L_{1} be the language defined by the regular expression:

$a^{*} b^{*}$

Let L_{2} be the language generated by the context-free grammar $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b\}, V=\{S\}$, and the production set P is:

$$
S \rightarrow a S b \mid \lambda
$$

(a) Write 5 distinct strings that belong to $L_{1} \backslash L_{2}$. If such strings do not exist, explain why.
(b) Write 5 distinct strings that belong to $L_{2} \backslash L_{1}$. If such strings do not exist, explain why.
(c) Write 5 distinct strings that belong to $L_{1} \cap L_{2}$. If such strings do not exist, explain why.
(d) Write 5 distinct strings over alphabet $\{a, b\}$ that belong to $\overline{L_{1} \cup L_{2}}$ (the complement of $L_{1} \cup L_{2}$.) If such strings do not exist, explain why.

