CS320: Problems for Day 3, Winter 2023

Problem 1 Let $N=\{0,1, \ldots\}$ be the set of natural numbers and let L be the language defined by the regular expression:

$$
(a \cup \lambda)(a \cup \lambda) b^{*}
$$

Construct a bijection from L to N. If such bijection does not exist, prove it.
Problem 2 Let:

$$
\Sigma=\{0,1\}
$$

and let L be the language defined by the regular expression:

$$
(0 \cup 1) 01
$$

Let N be the set of natural numbers.
State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)

1. L
2. L^{*}
3. L^{0}
4. set of all strings of length 5 over Σ
5. set of all strings of finite length over Σ
6. set of subsets of Σ
7. set of subsets of Σ^{*}
8. set of all languages over Σ
9. set of all functions from N to Σ
10. set of regular expressions over Σ

Problem 3 (a) Give an example of a finite language that is not regular. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
(b) Give an example of a regular language that is not finite. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
(c) Give an example of an infinite uncountable language. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.

Problem 4 Let L be the language defined by the regular expression:

$$
(c \cup a b \cup b)^{*} b b(c \cup a b)
$$

(a) Write 10 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 10 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 5 Let L be a set of strings over alphabet $\{0,1\}$ such that

$$
L=\{w \mid w \neq 11 \wedge w \neq 111\}
$$

(a) Write 5 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 5 distinct strings over alphabet $\{0,1\}$ that do not belong to L. If such strings do not exist, explain why.
(c) Write a regular expression that defines L. If such expression does not exist, explain why.

Problem 6 Let L be the language defined by the regular expression:

$$
(a \cup b)(a \cup b)(a \cup b)^{*}
$$

(a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.
(b) Write 8 distinct strings over alphabet $\{a, b\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 7 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b)((a \cup b)(a \cup b))^{*}
$$

and let L_{2} be the language defined by the regular expression:

$$
(a \cup b)(a \cup b)(a \cup b)^{*}
$$

In your answers to the following questions, state cardinalities of finite sets by giving the exact numbers. For infinite sets, specify if they are countable or not.
(a) Let $S_{1}=L_{1} \cup L_{2}$. Write a regular expression that defines S_{1}. If such a regular expression does not exist, explain why.
(b) Let $S_{2}=L_{1} \backslash L_{2}$. Write a regular expression that defines S_{2}. If such a regular expression does not exist, explain why.
(c) Let $S_{3}=L_{1} \cap L_{2}$. Write a regular expression that defines S_{3}. If such a regular expression does not exist, explain why.
(d) What is the cardinality of S_{1} ?
(e) What is the cardinality of S_{2} ?
(f) What is the cardinality of S_{3} ?

Problem 8 (a) Let L_{1} be the set of all strings of length two or more over alphabet $\{a, b\}$ in which all the a 's follow all the b 's. Write 5 distinct strings that belong to L_{1}. If such strings do not exist, explain why.
(b) Write a regular expression that defines L_{1}. If such a regular expression does not exist, explain why.
(c) Let L_{2} be the set of all strings over alphabet $\{a, b, c\}$ that begin with c, end with b, and contain exactly two a 's. Write 5 distinct strings that belong to L_{2}. If such strings do not exist, explain why.
(d) Write a regular expression that defines L_{2}. If such a regular expression does not exist, explain why.

Problem 9 (a) Let L_{1} be the set of all strings over alphabet $\{0,1\}$ that do not contain the substring 11.
Write a regular expression that defines L_{1}. If such regular expression does not exist, explain why.
(b) Let L_{2} be the set of all strings over alphabet $\{0,1\}$ that contain an odd number of 1 's.

Write a regular expression that defines L_{2}. If such regular expression does not exist, explain why.
Problem 10 (a) Let L_{1} be the set of all strings over alphabet $\{0,1\}$ that contain exactly two zeros.
Write a regular expression that defines L_{1}. If such regular expression does not exist, explain why.
(b) Let L_{2} be the set of all strings over alphabet $\{0,1\}$ that contain at least two zeros.

Write a regular expression that defines L_{2}. If such regular expression does not exist, explain why.
(c) Let L_{3} be the set of all strings over alphabet $\{0,1\}$ that contain at most two zeros.

Write a regular expression that defines L_{3}. If such regular expression does not exist, explain why.
Problem 11 (a) Let L be the set of strings over the alphabet $\{0,1\}$ whose first symbol is different from the last symbol. Write a regular expression that defines L. If such a regular expression does not exist, prove it.
(b) Let \mathcal{R} be the class of languages that can be represented by a regular expression, and let \mathcal{N} be the class of languages that cannot be represented by a regular expression. State the cardinalities of \mathcal{R} and \mathcal{N}, and compare them.

Problem 12 Let L be the set of all strings over alphabet $\{a, b, c\}$ whose first letter occurs at least once again in the string.
Write a regular expression that defines L. If such a regular expression does not exist, prove it.

