CS320: Problems for Day 3, Winter 2023

Problem 1 Let $N = \{0, 1, ...\}$ be the set of natural numbers and let L be the language defined by the regular expression:

$(a\cup\lambda)\,(a\cup\lambda)\,b^*$

Construct a bijection from L to N. If such bijection does not exist, prove it.

Problem 2 Let:

 $\Sigma = \{0, 1\}$

and let L be the language defined by the regular expression:

 $(0 \cup 1) \, 01$

Let N be the set of natural numbers.

State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)

1. L

2. L^*

3. L^0

4. set of all strings of length 5 over Σ

- 5. set of all strings of finite length over Σ
- 6. set of subsets of Σ
- 7. set of subsets of Σ^*
- 8. set of all languages over Σ
- 9. set of all functions from N to Σ
- 10. set of regular expressions over Σ

Problem 3 (a) Give an example of a finite language that is not regular. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.

(b) Give an example of a regular language that is not finite. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.

(c) Give an example of an infinite uncountable language. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.

Problem 4 Let *L* be the language defined by the regular expression:

$$(c \cup ab \cup b)^*bb \ (c \cup ab)$$

(a) Write 10 distinct strings that belong to L. If such strings do not exist, explain why.

(b) Write 10 distinct strings over alphabet $\{a, b, c\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 5 Let L be a set of strings over alphabet $\{0, 1\}$ such that

$$L = \{ w \mid w \neq 11 \land w \neq 111 \}$$

- (a) Write 5 distinct strings that belong to L. If such strings do not exist, explain why.
- (b) Write 5 distinct strings over alphabet $\{0,1\}$ that do not belong to L. If such strings do not exist, explain why.
- (c) Write a regular expression that defines L. If such expression does not exist, explain why.

Problem 6 Let *L* be the language defined by the regular expression:

$$(a\cup b)(a\cup b)(a\cup b)^*$$

- (a) Write 8 distinct strings that belong to L. If such strings do not exist, explain why.
- (b) Write 8 distinct strings over alphabet $\{a, b\}$ that do not belong to L. If such strings do not exist, explain why.

Problem 7 Let L_1 be the language defined by the regular expression:

$$(a \cup b) ((a \cup b)(a \cup b))^*$$

and let L_2 be the language defined by the regular expression:

$$(a \cup b) (a \cup b) (a \cup b)^*$$

In your answers to the following questions, state cardinalities of finite sets by giving the exact numbers. For infinite sets, specify if they are countable or not.

(a) Let $S_1 = L_1 \cup L_2$. Write a regular expression that defines S_1 . If such a regular expression does not exist, explain why.

(b) Let $S_2 = L_1 \setminus L_2$. Write a regular expression that defines S_2 . If such a regular expression does not exist, explain why.

(c) Let $S_3 = L_1 \cap L_2$. Write a regular expression that defines S_3 . If such a regular expression does not exist, explain why.

- (d) What is the cardinality of S_1 ?
- (e) What is the cardinality of S_2 ?
- (f) What is the cardinality of S_3 ?

Problem 8 (a) Let L_1 be the set of all strings of length two or more over alphabet $\{a, b\}$ in which all the *a*'s follow all the *b*'s. Write 5 distinct strings that belong to L_1 . If such strings do not exist, explain why.

(b) Write a regular expression that defines L_1 . If such a regular expression does not exist, explain why.

(c) Let L_2 be the set of all strings over alphabet $\{a, b, c\}$ that begin with c, end with b, and contain exactly two a's. Write 5 distinct strings that belong to L_2 . If such strings do not exist, explain why.

(d) Write a regular expression that defines L_2 . If such a regular expression does not exist, explain why.

Problem 9 (a) Let L_1 be the set of all strings over alphabet $\{0, 1\}$ that do not contain the substring 11. Write a regular expression that defines L_1 . If such regular expression does not exist, explain why. (b) Let L_2 be the set of all strings over alphabet $\{0, 1\}$ that contain an odd number of 1's. Write a regular expression that defines L_2 . If such regular expression does not exist, explain why.

Problem 10 (a) Let L_1 be the set of all strings over alphabet $\{0,1\}$ that contain exactly two zeros.

Write a regular expression that defines L_1 . If such regular expression does not exist, explain why.

(b) Let L_2 be the set of all strings over alphabet $\{0,1\}$ that contain at least two zeros.

Write a regular expression that defines L_2 . If such regular expression does not exist, explain why.

(c) Let L_3 be the set of all strings over alphabet $\{0,1\}$ that contain at most two zeros.

Write a regular expression that defines L_3 . If such regular expression does not exist, explain why.

Problem 11 (a) Let L be the set of strings over the alphabet $\{0, 1\}$ whose first symbol is different from the last symbol. Write a regular expression that defines L. If such a regular expression does not exist, prove it.

(b) Let \mathcal{R} be the class of languages that can be represented by a regular expression, and let \mathcal{N} be the class of languages that cannot be represented by a regular expression. State the cardinalities of \mathcal{R} and \mathcal{N} , and compare them.

Problem 12 Let *L* be the set of all strings over alphabet $\{a, b, c\}$ whose first letter occurs at least once again in the string.

Write a regular expression that defines L. If such a regular expression does not exist, prove it.