CS320: Problems for Day 2, Winter 2023

Problem 1 Let N be the set of natural numbers and let \mathcal{F} be the set of functions from the set N to the set $\{0,1\}$.
(a) Construct an injective function $g_{1}: N \rightarrow \mathcal{F}$. If such a function does not exist, explain why.
(b) Construct an injective function $g_{2}: \mathcal{F} \rightarrow N$. If such a function does not exist, explain why.

Problem 2 Let N be the set of natural numbers and let \mathcal{F} be the set of functions from set N to set $\{0,1\}$.
(a) Construct an injective function:

$$
g_{1}: N \rightarrow \mathcal{F}
$$

If such function does not exist, explain why.
(b) Construct a surjective function:

$$
g_{2}: N \rightarrow \mathcal{P}(N)
$$

If such function does not exist, explain why.
(c) Construct a bijective function:

$$
g_{3}: \mathcal{P}(N) \rightarrow \mathcal{F}
$$

If such function does not exist, explain why.
Problem 3 Let:

$$
\Sigma=\{a, b, c\}
$$

and let:

$$
N=\{0,1, \ldots\}
$$

be the set of natural numbers. State the cardinality of each of the following sets. (For a finite set, state the exact number. For an infinite set, specify if it is countable or not.)

1. $\mathcal{P}(\Sigma)$
2. Σ^{*}
3. set of functions from Σ to $\{0,1\}$
4. set of functions from Σ^{*} to $\{0,1\}$
5. $\mathcal{P}\left(\Sigma^{*}\right)$
6. set of functions from N to Σ
7. $\Sigma \times \Sigma$
8. $\Sigma^{*} \times \Sigma^{*}$
9. set of all finite subsets of N
10. $\mathcal{P}(N)$

Problem 4 (a) Give an example of two countably infinite sets, S_{1} and S_{2}, such that $S_{1} \cap S_{2}$ is finite. (Define S_{1} and S_{2} precisely.) If such sets do not exist, explain why.
(b) Give an example of two countably infinite sets, S_{1} and S_{2}, such that $S_{1} \backslash S_{2}$ is infinite. (Define S_{1} and S_{2} precisely.) If such sets do not exist, explain why.

Problem 5 Let $N=\{0,1, \ldots\}$ be the set of natural numbers. Construct five different injective functions from N to $N \times N$. If such functions do not exist, explain why.

Problem 6 Let $N=\{0,1, \ldots\}$ be the set of natural numbers.
(a) Construct an injective function from $N \times N$ to N. Justify your answer briefly. If such a function does not exist, explain why.
(b) Construct a non-injective function from $N \times N$ to N. Justify your answer briefly. If such a function does not exist, explain why.

Problem 7 (a) Construct an injective function from $N \times N$ to $N \times N \times N$. Justify your answer briefly. If such a function does not exist, explain why.
(b) Construct an injective function from $N \times N \times N$ to $N \times N$. Justify your answer briefly. If such a function does not exist, explain why.
(c) Construct a surjective function from $N \times N \times N$ to $N \times N$. Justify your answer briefly. If such a function does not exist, explain why.

