CS320: Problems for Day 13, Winter 2023

Problem 1 (a) Let G be a grammar that defines the $C++$ programming language. Describe the algorithm that should be employed by a program that solves the following problem:
Infut: An arbitrary string p of characters from the legal C++ character set.
Question: Does p represent a valid $\mathrm{C}++$ program?
Explain your answer. If such algorithm does not exist, prove it.
(b) Let G be a grammar that defines the $\mathrm{C}++$ programming language. In an introductory programming class, students write C++ programs for verifying if a sequence of five integers is sorted. Describe the algorithm that should be employed by a program that solves the following problem:
InPut: An arbitrary student program p and an arbitrary sequence s of five integers.
Question: Does p correctly verify s ?
Explain your answer. If such algorithm does not exist, prove it.
(c) Let G be a grammar that defines the $\mathrm{C}++$ programming language. In an introductory programming class, students write $\mathrm{C}++$ programs for sorting a sequence of integers of arbitrary length. There are only two grades: pass and fail. A student program passes if it correctly sorts the benchmark input sequence within two seconds of processor time; otherwise the program receives the grade fail. Describe the algorithm that should be employed by a program that solves the following problem:
InPUT: An arbitrary student program p and an arbitrary integer sequence s.
Question: Does p pass if tested on s as the benchmark?
Explain your answer. If such algorithm does not exist, prove it.
(d) Let G be a grammar that defines the $\mathrm{C}++$ programming language, as implemented by a major software vendor, named X, and let P be the compiler manufactured by this vendor. At a major university, students are writing $\mathrm{C}++$ compilers in their software design courses, as programming exercises. Company X is interested in hiring students that write good compilers. Company X evaluates a compiler as good if it compiles the same set of programs as its own compiler P. Describe the algorithm that should be employed by a program that solves the following problem:
Input: Compiler P developed by X, and an arbitrary compiler P_{1} written by a student.
Question: Is P_{1} a good compiler?
Explain your answer. If such algorithm does not exist, prove it.
(e) The scenario is identical to that given in part (d), except that Company X evaluates a compiler as good if it compiles the same set of programs as its own compiler P and, additionally, is never slower than P by a factor greater than 2. Describe the algorithm that should be employed by a program that solves the following problem:
Input: Compiler P developed by X, and an arbitrary compiler P_{1} written by a student.
Question: Is P_{1} a good compiler?
Explain your answer. If such algorithm does not exist, prove it.

Problem 2 (a)

Let M_{1} be a Turing machine that decides language L_{1};
let M_{2} be a Turing machine that accepts language L_{2};
let M_{3} be a Turing machine that accepts language L_{3}.

Describe a Turing machine M that accepts language:

$$
L_{1} \cap\left(L_{2} \cup L_{3}\right)
$$

If such Turing machine does not exist, prove it.
(b)

Let M_{1} be a Turing machine that accepts language L_{1};
let M_{2} be a Turing machine that decides language L_{2};
let M_{3} be a Turing machine that decides language L_{3}.

Describe a Turing machine M that accepts language:

$$
L_{1} \backslash\left(L_{2} \cap L_{3}\right)
$$

If such Turing machine does not exist, prove it.
(c)

Let M_{1} be a Turing machine that decides language L_{1};
let M_{2} be a Turing machine that accepts language L_{2};
let M_{3} be a Turing machine that accepts language L_{3}.

Describe a Turing machine M that decides language:

$$
L_{1} \backslash\left(L_{2} \cap L_{3}\right)
$$

If such Turing machine does not exist, prove it.
Problem 3 Let M_{1} and M_{2} be two arbitrary Turing machines over input alphabet Σ. For each of the following six questions, determine if the answer is always yes, always no, or sometimes yes. Justify your answer in each case.
(a) Is $L\left(M_{1}\right)=\varnothing$?
(b) Is $L\left(M_{2}\right)=\Sigma^{*}$?
(c) Is $L\left(M_{1}\right)$ recursive?
(d) Is $L\left(M_{2}\right)$ recursively enumerable?
(e) Is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
(f) Is $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ recursively enumerable?

Problem 4 Let L be a non-recursive language over the English alphabet $\{a, b, c, \ldots, x, y, z\}$, accepted by a Turing machine M. Describe a Turing machine M^{\prime} such that M^{\prime} writes error on its tape and halts if and only if its input string does not belong to L. If such M^{\prime} does not exist, explain why.

