CS320: Problems for Day 13, Winter 2023

Problem 1 (a) Let G be a grammar that defines the C++ programming language. Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: An arbitrary string p of characters from the legal C++ character set.

QUESTION: Does p represent a valid C++ program?

Explain your answer. If such algorithm does not exist, prove it.

(b) Let G be a grammar that defines the C++ programming language. In an introductory programming class, students write C++ programs for verifying if a sequence of five integers is sorted. Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: An arbitrary student program p and an arbitrary sequence s of five integers.

QUESTION: Does p correctly verify s?

Explain your answer. If such algorithm does not exist, prove it.

(c) Let G be a grammar that defines the C++ programming language. In an introductory programming class, students write C++ programs for sorting a sequence of integers of arbitrary length. There are only two grades: pass and fail. A student program passes if it correctly sorts the benchmark input sequence within two seconds of processor time; otherwise the program receives the grade fail. Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: An arbitrary student program p and an arbitrary integer sequence s.

QUESTION: Does p pass if tested on s as the benchmark?

Explain your answer. If such algorithm does not exist, prove it.

(d) Let G be a grammar that defines the C++ programming language, as implemented by a major software vendor, named X, and let P be the compiler manufactured by this vendor. At a major university, students are writing C++ compilers in their software design courses, as programming exercises. Company X is interested in hiring students that write good compilers. Company X evaluates a compiler as good if it compiles the same set of programs as its own compiler P. Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: Compiler P developed by X, and an arbitrary compiler P_1 written by a student.

QUESTION: Is P_1 a good compiler?

Explain your answer. If such algorithm does not exist, prove it.

(e) The scenario is identical to that given in part (d), except that Company X evaluates a compiler as good if it compiles the same set of programs as its own compiler P and, additionally, is never slower than P by a factor greater than 2. Describe the algorithm that should be employed by a program that solves the following problem:

INPUT: Compiler P developed by X, and an arbitrary compiler P_1 written by a student.

QUESTION: Is P_1 a good compiler?

Explain your answer. If such algorithm does not exist, prove it.

Problem 2 (a)

Let M_1 be a Turing machine that decides language L_1 ; let M_2 be a Turing machine that accepts language L_2 ; let M_3 be a Turing machine that accepts language L_3 .

Describe a Turing machine M that accepts language:

 $L_1 \cap (L_2 \cup L_3)$

If such Turing machine does not exist, prove it. (b)

Let M_1 be a Turing machine that accepts language L_1 ; let M_2 be a Turing machine that decides language L_2 ; let M_3 be a Turing machine that decides language L_3 .

Describe a Turing machine M that accepts language:

 $L_1 \setminus (L_2 \cap L_3)$

If such Turing machine does not exist, prove it.

(c)

Let M_1 be a Turing machine that decides language L_1 ; let M_2 be a Turing machine that accepts language L_2 ; let M_3 be a Turing machine that accepts language L_3 .

Describe a Turing machine M that decides language:

$$L_1 \setminus (L_2 \cap L_3)$$

If such Turing machine does not exist, prove it.

Problem 3 Let M_1 and M_2 be two arbitrary Turing machines over input alphabet Σ . For each of the following six questions, determine if the answer is always **yes**, always **no**, or sometimes **yes**. Justify your answer in each case.

- (a) Is $L(M_1) = \emptyset$?
- **(b)** Is $L(M_2) = \Sigma^*$?
- (c) Is $L(M_1)$ recursive?
- (d) Is $L(M_2)$ recursively enumerable?
- (e) Is $L(M_1) = L(M_2)$?
- (f) Is $L(M_1) \cup L(M_2)$ recursively enumerable?

Problem 4 Let *L* be a non-recursive language over the English alphabet $\{a, b, c, \ldots, x, y, z\}$, accepted by a Turing machine *M*. Describe a Turing machine *M'* such that *M'* writes *error* on its tape and halts if and only if its input string does not belong to *L*. If such *M'* does not exist, explain why.