CS320: Problems for Day 11, Winter 2023

Problem 1 You are given two Turing machines, M_{1} and M_{2}, such that M_{1} accepts language L_{1} and M_{2} decides language L_{2}.
Is $L_{1} \backslash L_{2}$ a recursively enumerable language?
If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing that such a Turing machine does not exist.

Problem 2 You are given two Turing machines, M_{1} and M_{2}, such that M_{1} accepts language L_{1} and M_{2} accepts language L_{2}.
Is $L_{1} \cup L_{2}$ a recursively enumerable language?
If your answer is "yes", prove it by describing an appropriate Turing machine. If your answer is "no", prove it by showing why such a Turing machine does not exist.

Problem 3 Let:

$$
L=\{(R(M), n) \mid M \text { halts on blank tape after } \leq n \text { steps }\}
$$

where $R(M)$ is a representation of Turing machine M and n is a natural number. Describe a Turing machine M^{\prime} that accepts L. If such M^{\prime} does not exist, explain why.

Problem 4 Let L be a non-recursive language, accepted by a Turing machine M, and let k be a natural number. Describe a Turing machine M^{\prime}, such that on input w, M^{\prime} writes error on its tape and halts if and only if M does not accept w within the first k computation steps. If such M^{\prime} does not exist, explain why.

