CS320: Problems for Day 10, Winter 2023

Problem 1 Let L be the set of strings over alphabet $\{a, b, c\}$ that do not start with c and do not end with a.
(a) Draw a state-transition graph of a deterministic finite automaton that accepts L. If such automaton does not exist, prove it.
(b) Is the complement \bar{L} of the language L decidable? Explain your answer briefly.

Problem 2 Let L be the language accepted by the Turing machine:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)
$$

such that:
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{f}\right\} ;$
$\Sigma=\{a, b, c\} ;$
$\Gamma=\{B, a, b, c\} ;$
$F=\left\{q_{f}\right\} ;$
and δ is defined by the following transition set:
$\left[q_{0}, a, q_{1}, a, R\right]$,
$\left[q_{0}, b, q_{2}, b, R\right]$,
$\left[q_{0}, c, q_{3}, c, R\right]$,
$\left[q_{1}, b, q_{1}, b, R\right]$,
$\left[q_{2}, c, q_{2}, c, R\right]$,
$\left[q_{3}, a, q_{3}, a, R\right]$,
$\left[q_{1}, B, q_{f}, B, R\right]$,
$\left[q_{2}, B, q_{f}, B, R\right]$,
$\left[q_{3}, B, q_{f}, B, R\right]$
Write a complete formal definition or a state-transition graph of a finite automaton M^{\prime} that accepts L. If such automaton does not exist, prove it.

Problem 3 (a) Write a complete formal definition of a Turing machine M_{1} over input alphabet $\{a, b\}$ such that M_{1} halts on every input. If such a machine does not exist, explain why.
(b) Write a complete formal definition of a Turing machine M_{2} over input alphabet $\{a, b\}$ such that M_{2} does not halt on any input. If such a machine does not exist, explain why.
(c) Write a complete formal definition of a Turing machine M_{3} over input alphabet $\{a, b\}$ such that M_{3} halts on every input and rejects Σ^{*}. If such a machine does not exist, explain why.
(d) Write a complete formal definition of a Turing machine M_{4} over input alphabet $\{a, b\}$ such that M_{4} does not halt on any input and accepts Σ^{*}. If such a machine does not exist, explain why.

Problem 4 Consider a Turing machine:

$$
M=(Q, \Sigma, \Gamma, \delta, q)
$$

such that:

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}\right\} \\
& \Sigma=\{a, b\} \\
& \Gamma=\{a, b, B\}
\end{aligned}
$$

and δ is defined by the following transition set:

$$
\begin{aligned}
& {\left[q_{0}, a, q_{1}, B, R\right]} \\
& {\left[q_{0}, b, q_{1}, B, R\right]} \\
& {\left[q_{1}, a, q_{0}, B, R\right]} \\
& {\left[q_{1}, b, q_{0}, B, R\right]} \\
& {\left[q_{1}, B, q_{1}, B, R\right]}
\end{aligned}
$$

(where B is the designated blank symbol.)
(a) Write a complete formal definition of a Turing machine M_{1} such that M_{1} halts on input η if and only if M does not halt on input η, for all $\eta \in \Sigma^{*}$. In short:

$$
(M(\eta) \searrow) \rightarrow\left(M_{1}(\eta) \nearrow\right)
$$

and also:

$$
(M(\eta) \nearrow) \rightarrow\left(M_{1}(\eta) \searrow\right)
$$

If such Turing machine M_{1} does not exist, prove it.
(b) Is the language accepted by M recursive? Explain your answer.
(c) Is the language accepted by M recursively enumerable? Explain your answer.

Problem 5 Consider the Turing machine:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

such that:
$Q=\{q, r, s, t, v\} ;$
$\Sigma=\{a, b\} ;$
$\Gamma=\{B, a, b, \Psi\} ;$
$F=\{t\} ;$
and δ is defined by the following transition set:

$$
\begin{aligned}
& {[q, a, q, a, R]} \\
& {[q, b, q, \Psi, R]} \\
& {[q, B, r, B, L]} \\
& {[r, a, r, a, L]} \\
& {[r, \Psi, s, \Psi, L]} \\
& {[s, a, s, a, L]} \\
& {[s, \Psi, t, \Psi, L]} \\
& {[t, a, t, a, L]} \\
& {[t, \Psi, v, \Psi, R]} \\
& {[v, a, v, a, R]} \\
& {[v, \Psi, v, \Psi, R]} \\
& {[v, B, v, B, R]}
\end{aligned}
$$

(where B is the designated blank symbol.)
M accepts by final state.
(a) Write a regular expression that defines the set of strings on which M diverges. If such regular expression does not exist, prove it.
(b) Write a regular expression that defines the set of strings on which M halts and accepts. If such regular expression does not exist, prove it.
(c) Write a regular expression that defines the set of strings on which M halts and rejects. If such regular expression does not exist, prove it.
(d) Write a regular expression that defines the set of strings on which M terminates abnormally (attempts to move the head to the left of the leftmost cell.) If such regular expression does not exist, prove it.

Problem 6 Consider a Turing machine:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}\right)
$$

such that:

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \Sigma=\{a, b, c\} \\
& \Gamma=\{a, b, c, B\}
\end{aligned}
$$

and δ is defined by the following transition set:

$$
\begin{aligned}
& {\left[q_{0}, a, q_{1}, a, R\right]} \\
& {\left[q_{0}, b, q_{0}, b, R\right]} \\
& {\left[q_{0}, c, q_{0}, c, R\right]} \\
& {\left[q_{0}, B, q_{0}, B, R\right]} \\
& {\left[q_{1}, a, q_{2}, a, R\right]} \\
& {\left[q_{1}, b, q_{1}, b, R\right]} \\
& {\left[q_{1}, c, q_{1}, c, R\right]} \\
& {\left[q_{1}, B, q_{1}, B, R\right]}
\end{aligned}
$$

(where B is the designated blank symbol.)
(a) Let L be the set of those strings over Σ on which the Turing machine M does not halt. Draw a state transition graph of a deterministic finite automaton M_{1} that accepts L. If such finite automaton M_{1} does not exist, prove it. (b) Is L a recursive language? Explain your answer briefly.

Problem 7 Consider the Turing machine:

$$
M=(Q, \Sigma, \Gamma, \delta, q)
$$

such that:
$Q=\{q, r, s, t\} ;$
$\Sigma=\{a, b, c\} ;$
$\Gamma=\{B, a, b, c\} ;$
and δ is defined by the following transition set:

$$
\begin{aligned}
& {[q, a, r, b, R]} \\
& {[q, b, r, a, R]} \\
& {[q, c, t, c, R]} \\
& {[t, a, t, a, R]} \\
& {[t, b, t, b, R]} \\
& {[t, B, s, B, R]}
\end{aligned}
$$

(where B is the designated blank symbol.)
(a) Does M halt on input $a b b a$? If your answer is "yes", write the configuration in which M halts. If your answer is "no", write the configuration of M after it makes exactly 9 moves.
(b) Does M halt on input $a b c b b c b$? If your answer is "yes", write the configuration in which M halts. If your answer is "no", write the configuration of M after it makes exactly 9 moves.
(c) Does M halt on input $c b a b$? If your answer is "yes", write the configuration in which M halts. If your answer is "no", write the configuration of M after it makes exactly 9 moves.

