Instructor: Alex Ryba
10.00am - 11.30am, Tuesday, January 24, 2023

Problem 1 For each of the following five languages, give the best possible classification of that language into one of the following classes:

> regular
> context-free
> decidable
> Turing recognizable
> not Turing recognizable

Your classification of a language is the best possible if the class which you indicate contains that language, but no other listed class which is a proper subset of your class contains that language.

1. The language consisting of strings of the form $a^{n} a^{n} c^{n}$ where n is a positive integer.

Answer: context-free
2. The language consisting of strings of the form $a^{n} b^{n} a^{n}$ where n is a positive integer.

Answer: decidable
3. The language consisting of all binary strings.

Answer: regular
4. The language consisting of pairs (M, w), where M is (the binary code for) a Turing machine that diverges on input w.
Answer: not Turing recognizable
5. The language consisting of pairs (M, w), where M is (the binary code for) a Turing machine that halts and rejects on input w.
Answer: Turing recognizable

Problem 2 Let L be the language accepted by the pushdown automaton:

$$
M=(Q, \Sigma, \Gamma, \delta, q, F)
$$

where:

$$
Q=\{q, r, s, t\} \quad \Sigma=\{a, b, c\} \quad \Gamma=\{\$\} \quad F=\{q\}
$$

and the transition function δ is defined by the following state diagram:
(Recall that M is defined so as to accept by final state and empty stack.)
(a) Write 3 distinct strings that belong to L. If such strings do not exist, prove it.

Answer: $\lambda, c c, a c c$
(b) Give a context free grammar G that generates L. If such a grammar does not exist, prove it.

Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, c\}, V=\{S, L\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow L S \mid \lambda \\
& L \rightarrow a c c \mid c c
\end{aligned}
$$

(c) Give a regular expression that represents L. If such an expression does not exist, prove it.

Answer: $(c c \cup a c c)^{*}$

Problem 3 Let L be the language generated by the context-free grammar $G=(V, \Sigma, P, S)$, where: $\Sigma=\{a, b, c\}, V=\{S\}$, and P is:

$$
S \rightarrow a S b|S b| c
$$

(a) Construct the state diagram of a push down automaton that accepts the language L. If such a push down automaton does not exist, prove it.
Answer:

(b) Draw a state-transition graph of a deterministic finite automaton that accepts the language L. If such an automaton does not exist, prove it.
Answer: Such an expression does not exist, since L is not a regular language. To prove this, assume the opposite. Let k be the pumping constant for L. Then $a^{k} c b^{k} \in L$. In the "pumping" decomposition: $a^{k} c b^{k}=u v x$, we have: $|u v| \leq k$, hence the "pumping" substring v consists entirely of a 's, say $v=a^{j}$. Recall that $j>0$, since the "pumping" substring cannot be empty. By the pumping lemma, the word $W=u v^{2} x$ belongs to L. However, w has the form $a^{k+j} c b^{k}$. The word w does not belong to L, since $\j remains on the stack when w is passed through the push down automaton of (a). This is a contradiction.

Problem 4 Consider the Turing machine:

$$
M=\left(Q, \Sigma, \Gamma, \delta, p_{0}, \text { accept }, \text { reject }\right)
$$

where: $Q=\left\{p_{0}, q, r\right.$, accept, reject $\} ; \Sigma=\{0,1\} ; \Gamma=\{B, 0,1\}$;

Here, M has a one-way infinite tape, B is the designated blank symbol, p_{0} is the inital state, and accept and reject are the accepting and rejecting states. The transition rule δ is defined by the following diagram:

In answers to the following questions, a list of configurations should begin with the initial configuration of the machine.
(a) Write the first three configurations of the machine as it processes the input string $w=00$. Does M halt on input string w ?
Answer: $p_{0} 00,0 q 0,00 a c c e p t . ~ M$ halts when it reaches the accept state.
(b) Write the first three configurations of the machine as it processes the input string $w=1100$. Does M halt on input string w ?
Answer: $p_{0} 1100,0 r 100,00 r e j e c t 00 . M$ halts when it reaches the reject state.
(c) Write the first three configurations of the machine as it processes the input string $w=01$. Does M halt on input string w ?
Answer: $p_{0} 01,0 q 1, p_{0} 01 . M$ does not halt on input string w because its third configuration is identical to its first. This starts an infinite loop.
(d) Write the first five configurations of the machine as it processes the input string $w=100$. Does M halt on input string w ?
Answer: $p_{0} 100,0 r 00, p_{0} 010,0 q 10, p_{0} 010$. M does not halt on input string w because its fifth configuration is identical to its third. This starts an infinite loop.
(e) Write a regular expression that defines the set of strings that are accepted by M. If such a regular expression does not exist, prove it.
Answer: $00(0 \cup 1)^{*}$, because a string is accepted if and only of it begins 00 .

Problem 5 Let L be the set of strings that have the form $w w$ where w is a string in $(a \cup b \cup c)^{*}$.
Let L_{1} be the language defined by the regular expression: $\boldsymbol{a}^{*} \boldsymbol{b}^{*} \boldsymbol{c}^{*}$
Let L_{2} be the language defined by the regular expression: $\boldsymbol{a}^{*} \boldsymbol{b}^{*} \boldsymbol{c}^{*} \boldsymbol{a}^{*} \boldsymbol{b}^{*} \boldsymbol{c}^{*}$
(a) Let $S_{1}=L \cap L_{1}$. Write a regular expression that defines S_{1}. If such a regular expression does not exist, prove it.
Answer: $(a a)^{*} \cup(b b)^{*} \cup(c c)^{*}$
(b) Let $S_{2}=L \cap L_{2}$. Write a context free grammar that defines S_{2}. If such a grammar does not exist, prove it.

Answer: Such a context free grammar does not exist.
S_{2} consists of strings with the form $a^{\ell} b^{m} c^{n} a^{\ell} b^{m} c^{n}$, where $\ell \geq 0, m \geq 0, n \geq 0$.
Suppose that S_{2} is context free. Then it has a pumping constant k. Consider the string $w=a^{k} b^{k} c^{k} a^{k} b^{k} c^{k} \in S_{2}$. We can pump w, because $\ell(w)=6 k \geq k$. In a pumping decomposition $w=s x y z t$. The pumping window $x y z$ has $\ell(x y z) \leq k$. Moreover, the pumping part $x z$ is non-empty. Suppose that $\alpha \in\{a, b, c\}$ appears exactly $j \geq 1$ times in $x z$. Note that the pumping window can only meet one of the groups of α characters in w - because they are separated by $2 k$ other characters and $x y z$ has length at most k. Hence, if the pumped string $w^{\prime}=s x x y z z t$ has only two groups of α characters, one has length $k+j$ and the other has length k. We deduce that $w^{\prime} \notin S_{2}$, in contradiction to the Pumping Lemma for context free languages. The contradiction shows that we were wrong to suppose that S_{2} is context free.

Problem 6 Let L be the language accepted by the NFA with the following state transition graph.

Draw the state-transition graph of the deterministic finite automaton that accepts L that is constructed by our algorithm that converts an NFA to a DFA. If such an automaton does not exist, prove it.

Answer:

