10.00am - 11.30am, Friday, January 13, 2023

Problem 1 (a) Give an example of a finite language that is not regular. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: Such a language does not exist. Every finite language is regular.
(b) Give an example of a regular language that is not finite. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: Let $\Sigma=\{0,1\}$. Then Σ^{*} is regular and is not finite.
(c) Give an example of an infinite uncountable language. Give a precise definition of this language and explain your answer briefly. If such a language does not exist, explain why.
Answer: There is no such language.
Consider a language L over an alphabet Σ. Then Σ^{*} is countable, but $L \subset \Sigma^{*}$. This shows that L is countable.

Problem 2 Let L_{1} be the language defined by the regular expression:

$$
(a \cup b a)^{*}
$$

and let L_{2} be the language defined by the regular expression:

$$
(b \cup b a)^{*}
$$

(a) Let $S_{1}=L_{1} \cup L_{2}$. Write a regular expression that defines S_{1}. If such a regular expression does not exist, explain why.

Answer:

$$
(a \cup b a)^{*} \cup(b \cup b a)^{*}
$$

(b) Complete the following sentence, using at most 4 words.
"The language L_{1} consists of strings over the alphabet $\{a, b\}$ in which every b is ...".
Answer: The language L_{1} consists of strings over the alphabet $\{a, b\}$ in which every b is followed by an a.
(c) Let $S_{2}=L_{1} \cap L_{2}$. Write five strings that belong to S_{2}. If such strings do not exist, explain why.

Answer: The language L_{2} consists of strings over the alphabet $\{a, b\}$ in which every a is preceeded by a b.
The strings $\lambda, b a, b a b a, b a b a b a, b a b a b a b a$ belong to S_{2} because they meet both of our conditions.
(d) Write a regular expression that defines S_{2}. If such a regular expression does not exist, explain why. (Hint: Use your answer to (c) as a guide).

Answer:

$$
(b a)^{*}
$$

(e) Let $S_{3}=L_{1} \backslash L_{2}$. Write a regular expression that defines S_{3}. If such a regular expression does not exist, explain why. (Hint: Think of some strings that belong to this language as a guide).
Answer: S_{3} consists of strings where every b is followed by an a, but at least one a is not preceded by a b. These are strings are defined by the expression:

$$
(a \cup b a)^{*} a(a \cup b a)^{*}
$$

Problem 3 Let L be the set of strings over alphabet $\{a, b\}$ that have odd length and have b for the middle character.
(a) Write a complete formal definition of a context-free grammar that generates L. If such a grammar does not exist, prove it.
Answer: $G=(V, \Sigma, P, S)$, where $\Sigma=\{a, b\}, V=\{S, Z\}$, and the production set P is:

$$
\begin{aligned}
& S \rightarrow Z S Z \mid b \\
& Z \rightarrow a \mid b
\end{aligned}
$$

(b) Write a regular expression that defines L. If such a regular expression does not exist, prove it.

Answer: Such an expression does not exist, since L is not a regular language. To prove this, assume the opposite. Let k be the constant as in the Pumping Lemma. Let $n>k$; then $a^{n} b a^{n} \in L$. In the "pumping" decomposition: $a^{n} b a^{n}=u v x$, we have: $|u v| \leq k<n$, hence the "pumping" substring v consists entirely of a 's, say $v=a^{j}$. Recall that $j>0$, since the "pumping" substring cannot be empty. By the pumping lemma, every word of the form $u v^{i} x$, $i \geq 0$, belongs to L. However, such a word has the form $a^{n+(i-1) j} b a^{n}$. If $i \neq 1$, the single b is not the middle character. Therefore, if $i \neq 1$, the pumped word does not belong to L, and this is a contradiction.

Problem 4 Let L be the set of strings over alphabet $\{a, b\}$ that have length at least 2 and have identical characters in the first and last positions.
(a) Write a complete formal definition of a context-free grammar that generates L. If such a grammar does not exist, prove it.

Answer:

$G=\{V, \Sigma, P, S\}$, where $\Sigma=\{a, b\}$,
$V=\{S, A\}$, and P is:

$$
\begin{aligned}
& S \rightarrow a A a \mid b A b \\
& A \rightarrow \lambda|a A| b A
\end{aligned}
$$

(b) Draw a state transition graph that represents a finite automaton that accepts L. If such an automaton does not exist, prove it.

Answer:

Problem 5 Let L be the language accepted by the NFA with the following state transition graph.

Draw a state-transition graph of a deterministic finite automaton that accepts L. If such an automaton does not exist, prove it.

Answer:

Problem 6 Consider the following finite automaton.

Draw the regular expression graph obtained from this automaton when the node X is eliminated using one step of the algorithm for conversion of a finite automaton to a regular expression. (Only show how to remove the node X. Do not complete the algorithm to obtain a regular expression that corresponds to the automaton.)
Answer:
There are two edges into node X (from nodes A and B). There is one edge out of X to B. Accordingly we must modify the labels on the edges from A to B and from B to B. The modifications add the expressions $a b^{*} a$ and $c b^{*} a$, respectively. We obtain the following regular expression graph.

