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1 Spherical Triangles and Spherical Trigonometry

.
Although high school textbooks from early in the 20th century show that

spherical trigonometry was still widely taught then, today very few mathemati-
cians have any familiarity with the subject. The first thing to understand is
that all six parts of a spherical triangle are really angles — see Figure 1.

Figure 1: The parts of a spherical triangle.
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This shows a spherical triangle ABC on a sphere centered at O. The typical
side a = BC is a great circle arc from B to C that lies in the plane OBC; its
length is the angle a = BOC subtended at O. Similarly, the typical angle A
between the two sides AB and AC is the angle between the planes OAB and
OAC.

We have adopted the usual convention that the same letters A, B, C stand
for both vertices and angles, and similarly a, b, c for both the edges and their
lengths.

Spherical trigonometry, like its planar analogue consists of formulae relating
the sides and angles of a triangle. The main difference is that in the spherical
versions trigonometric functions are applied to both sides and angles. Fortu-
nately the spherical formulae are so similar to the plane ones that for the most
part all we need are simple mnemonics to cover the changes.

There is a long history of such mnemonics from Napier (1614) through
Sylvester (1866) to the books of Workman (1912) and Smart (1971). The his-
tory of spherical trigonometry is closely bound to the history of astronomy (and
through astronomy, to navigation).

The mnemonics in this paper should enable the reader who can already solve
problems about plane triangles to do as much for spherical ones. We give no
proofs since these would substantially lengthen our paper — most of them can
be found in [4].

We believe that we have captured all the relations between sides and an-
gles of a triangle that have ever been taught under just five headings, to which
we devote our next five sections: the sine and cosine rules, Napier’s Penta-
gramma Mirificum, the four-part formula, the half angle formulae, and finally
the “analogies”.

2 The sine and cosine rules

The sine rule of ordinary trigonometry is

a

sinA
=

b

sinB
=

c

sinC

the common value being 2R or abc/2∆ where R is the circumradius and ∆ =√
s(s− a)(s− b)(s− c) the area of the triangle. The spherical sine rule is

sin a

sinA
=

sin b

sinB
=

sin c

sinC
=

sin a sin b sin c

2δ
, where

δ =
√

sin s sin (s− a) sin (s− b) sin (s− c).

The number δ does not seem to have a geometrical interpretation — it is related
to ∆ by Lexell’s∗ equation δ

2 = cos a2 cos b2 cos c2 sin ∆
2 , and to the circumradius R

by δ tanR = 2 sin a
2 sin b

2 sin c
2 , but is not a function just of ∆ (or of ∆ and R). δ

is also related to the inradius and exradii by δ = tan r sin s = tan ra sin (s− a),
analogous to ∆ = rs = ra(s− a) in the plane case.

∗“Besides Lexell, such a paper could only be written by D’Alembert or me.” (Euler)
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The cosine rule in spherical trigonometry is

cos a− cos b cos c = sin b sin c cosA

for a small triangle this reduces to the ordinary rule when we replace sinx by x
and cosx by 1 − x2/2, giving:

(1 − a2/2) ≈ (1 − b2/2)(1 − c2/2) + bc cosA

To quickly remember the signs, think of an equilateral triangle, for which cos a
is greater than cos2 a = cos b cos c.

Any formula of spherical trigonometry has a polar version, obtained by ap-
plying it to the polar triangle, in which sides are replaced by supplements of
angles and angles by supplements of sides. So for instance, the polar cosine rule
is

− cosA = cosB cosC − sinB sinC cos a

(Mnemonic, in the negative term of the formula for cos (B + C) insert a factor
cos a.)

In this case, as in several others, the corresponding plane formula (obtained
by putting cos a = 1) becomes either trivial or supplemental, that is, amounts
to saying that A is the supplement of B + C.

3 Right angled triangles; Napier’s Pentagramma Mirifi-
cum

The most important special case concerns right-angled triangles, for which there
is a marvelous mnemonic due to Napier. Taking C to be 90◦, there are five
variable parts, which we imagine in order at the vertices of a pentagon. To quote
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Workman’s wonderful book [7], “we mentally write for every part its complement
except for those parts which run up to the right angle (and therefore by way of
mnemonic may already be considered to have enough to do with 1

2π), and then
apply the formula”:

sin mid = (prod) cos opp = (prod) tan adj,

which gives a relation for any three parts, since one may be regarded as the
mid(dle) one, to which the other two are either opp(osite) or adj(acent).
For example, for the parts a, A′, c′, the middle is a while A′ and c′ are the
(modified) opposites. So the formula is

sin a = cosA′ cos c′ = sinA sin c, giving sinA =
sin a

sin c
(“sin”)

For the parts b, A, c, the modified middle is A′, adjacent to b and c′, so the
relation is:

sinA′ = tan b tan c′, giving cosA =
tan b

tan c
(“cos”)

while for A, b, a the relation is

sin b = tan a tanA′, or tanA =
tan a

sin b
. (“tan”)

We recognize “sin”, “cos”, “tan” as spherical analogues of the usual definitions
of sin, cos, tan.

A similar rule works for quadrantal triangles, which have a side of 90◦, except
that the modification is to supplement the two angles adjacent to the quadrant
and cosupplement the three parts that are not. The cosupplement of an angle θ
is θ− π/2, the complement of its supplement. (Smart says this rule is the same
as Napier’s, but that is only true up to sign.)

4 The four-part formula

When we know two angles of a plane triangle, we automatically know the third.
The four-part formula of spherical trigonometry substitutes for arguments that
rely on this.

For four parts such as A, b, C, a that are consecutive around the triangle, we
remember it as:

“cosmic product” = cot outside sin inside - cot outangle sin inangle
(meaning: outer side, inner side, outer angle, inner angle).

for example cos b cosC = cot a sin b− cotA sinC

.
where of course, the “cosmic product” is really the “cos mid product” (the
product of cosines of the middle, or inner parts).
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5 The half angle and half side formulae

These are:

sin
1

2
A = +

√
sin (s− b) sin (s− c)

sin b sin c
cos

1

2
a = +

√
cos (S −B) cos (S − C)

sinB sinC

cos
1

2
A = +

√
sin s sin (s− a)

sin b sin c
sin

1

2
a = +

√
− cosS cos (S −A)

sinB sinC

tan
1

2
A = +

√
sin (s− b) sin (s− c)

sin s sin (s− a)
tan

1

2
a = +

√
− cosS cos (S −A)

cos (S −B) cos (S − C)

Mnemonic for the half angle formulae: The square roots “cover a multitude of
sins” — if the sins are forgiven (by removing them) we obtain the corresponding
planar half angle formulae. Also, the numerator in the sinus formula has two s
minuses while that in the cosinus formula has one complete s and one s minus
(these are useful mnemonics for the possibly unfamiliar plane formulae too). The
tan formula should be read off from sin / cos.

The half side formulae are the polars of the half angle ones. The sines or
cosines involving 1

2 or s (the semiperimeter 1
2 (a+ b+ c)) are interchanged, but

sin s becomes − cosS, where S = 1
2 (A + B + C), which is obtuse. Again, the

tan one is sin / cos. (Because the half-side formulae determine the sides from
the angles, their planar analogues must be trivial or supplemental. In this case,
since S = π/2, cos (S −B) = sinB and cosS = 0.)

6 The so-called “analogies”

The formulae that are most in need of mnemonics are the “analogies” of Napier
and Delambre. The word “analogy” itself deserves some explanation. Perhaps
its best modern translation is “proportionality,” written P : Q :: R : S meaning
that P is to Q as R is to S. Nowadays we express this as an equality of ratios
P/Q = R/S. After all, the proportionality P : Q :: R : S expresses an analogy
in the surviving sense of that word between the relation of P to Q and that of
R to S.

The typical “analogy” in the historical sense equates two ratios of trigono-
metric functions, one of the sides of a triangle and the other of its angles. There
are two sets of four analogies, an older set due to Napier, called Napier’s analo-
gies ever since his day, and a newer set due to Delambre. However, the history
of Delambre’s analogies is rather tangled, and they are still often attributed to
Gauss (eg. by Workman). Delambre’s analogies have been known as Delambre’s
formulae, Gauss’ formulae, and even the Gauss-Mollweide formulae. Sylvester
proposed in 1866 that they be called “analogies”, by analogy with Napier’s.

5



In his 1873 paper, Isaac Todhunter takes great pains to determine the correct
attribution and comes down firmly on the side of Delambre.

Delambre himself said in his Astronomie that he had published them in the
Connaissance des Tems for 1808, but it was really in the volume for 1809, which
was actually available in April 1807! (Like later Almanacs and Ephemerides the
Connaissance des Tems made prognostications and astronomical predictions
for a coming year and so was published in advance.) Mollweide published the
analogies in 1808 and Gauss in his Theoria Motus Corporum Coelestium of 1809.
The interest in these years was prompted by the immediately previous discovery
of the first four asteroids: Ceres on 1st January 1801, Pallas on 28th March 1802,
Juno on 1st September 1804, and Vesta on 29th March 1807. (The fifth asteroid,
Astraea, had to wait until 8th December 1845.)

Sylvester also remarks on the difficulty of remembering the analogies and
gives his own mnemonic. Our interest in this subject stems from an improved
mnemonic that we found written by an anonymous previous owner (who we’ll
call ‘the student’) in a secondhand copy of Smart’s Textbook on spherical as-
tronomy (5th edition, 1971).

Smart deals with Delambre’s analogies on page 22, and at the foot of this
page, the student has written the following mnemonic for them:

cos-or-sinus semi(side Plus-or-Minus side)

Cos-or-Sinus semi(ANGle plus-or-minus ANGle)
=

same(semi side)

chANGed(semi ANGle)

where the capitalization indicates that the ambiguous sign in the numerator
corresponds to the rhyming ambiguous function in the denominator, and vice
versa.

On page 23 we find the student trying to find mnemonics for Napier’s
analogies (which Smart discusses there). The student has filled all the empty
spaces on that page with trial mnemonics of other kinds (one of which involves
“cot(côte)”).

In the student’s mnemonic ‘same’ and ‘chANGed’ on the right hand side
refer to the functions on the left. In our revision, these words in a denominator
refer to the function in the numerator, following the arrangement in Sylvester’s
(otherwise worse) mnemonic.

This simple alteration makes the student’s mnemonic give nine “analogies”.
In the typical one, called “trig = TRIG”, trig represents a trigonometric function
sin, cos, tan to be applied to sides, and TRIG another one, SIN, COS, TAN,
to be applied to angles. (This matches the convention that angles are written
in capital letters.) Each trigonometric function (trig or TRIG) has an image
‘signum’ (sig or SIG) which is − for sin, + for cos, and −/+ for tan. Our new
mnemonic has shape “trig(SIG) = TRIG(sig)”, or in full:

trig semi(side SIG side)

same trig semi(3rdside)
=

TRIG semi(ANGLE sig ANGLE)

chANGed TRIG semi(3rdANGle)
.
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Note that the “signum” on one side of the equation corresponds to the “trig’nom”
(trigonometric function) on the other. The “chANGge” of a TRIG is its cofunc-
tion. Also trig 1

2 (α −/+ β) is to be interpreted as trig 1
2 (α− β)/trig 1

2 (α+ β),
already a ratio. In this case the denominator in the mnemonic should be omitted
since it takes the form f( 1

2γ)/f( 1
2γ) = 1, for some function f .

If neither tan nor TAN is mentioned, we have the student’s mnemonic for
the Delambre analogies; if just one appears, our new mnemonic for the Napiers
(if TAN), or their polars (if tan); while finally the identity tan = TAN gives the
formula

tan 1
2 (a− b)

tan 1
2 (a+ b)

=
TAN 1

2 (A−B)

TAN 1
2 (A+B)

which we call “the tangent analogy”. This appears, though not by this name,
in several 19th century works (it is equivalent to the law of sines in the form
sin a
sin b = sinA

sinB , which is already an analogy in the historical sense).
Any difficulties in following our mnemonic should be cleared up by the fol-

lowing table, which lists all nine cases.

Delambre’s Analogies Napier’s Analogies

sin = SIN
sin 1

2 (a−b)
sin 1

2 c
=

SIN 1
2 (A−B)

COS 1
2C

sin = COS
sin 1

2 (a+b)

sin 1
2 c

=
COS 1

2 (A−B)

SIN 1
2C

sin = TAN
sin 1

2 (a−b)
sin 1

2 (a+b)
=

TAN 1
2 (A−B)

COT 1
2C

cos = SIN
cos 1

2 (a−b)
cos 1

2 c
=

SIN 1
2 (A+B)

COS 1
2C

cos = COS
cos 1

2 (a+b)

cos 1
2 c

=
COS 1

2 (A+B)

SIN 1
2C

cos = TAN
cos 1

2 (a−b)
cos 1

2 (a+b)
=

TAN 1
2 (A+B)

COT 1
2C

tan = SIN
tan 1

2 (a−b)
tan 1

2 c
=

SIN 1
2 (A−B)

SIN 1
2 (A+B)

tan = COS
tan 1

2 (a+b)

tan 1
2 c

=
COS 1

2 (A−B)

COS 1
2 (A+B)

tan = TAN
tan 1

2 (a−b)
tan 1

2 (a+b)
=

TAN 1
2 (A−B)

TAN 1
2 (A+B)

Polars of Napier’s Analogies Tangent Analogy

If trig is sin or tan, by omitting this function we obtain a useful planar analogue,
but if trig is cos the planar form is merely supplemental.

7 Hyperbolic Trigonometry

Many professional mathematicians are currently interested in hyperbolic geome-
try, and so in hyperbolic trigonometry. Fortunately, the formulae for hyperbolic
trigonometry are easily found from the spherical ones as follows: Replace the
trigonometric functions of the sides by hyperbolic functions and apply Osborn’s
rule that deduces hyperbolic identities from the better known trigonometric
ones. As we remarked in our paper [1], Osborn’s statement [3]: “change the
sign of any term that contains a product of sinhs” was insufficiently precise.
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[He should have told us to change the sign for each successive pair of sinhs, and
so to multiply by (−1)k any term that contains 2k or 2k+1 sinhs.] For example,
applied to the (spherical) cosine rule this gives the hyperbolic cosine rule:

cosh a = cosh b cosh c− sinh b sinh c cosA.

In Osborn’s rule it is to be understood that the formulae should be thought
of as a polynomial identity in sines and cosines. So for instance the four-part
formula:

cos b cosC = cot a sin b− cotA sinC

.
becomes

cosh b cosC = coth a sinh b− cotA sinC

.
Note that the first term on the right has one sine in the numerator and one in
the denominator and so keeps the same sign in the hyperbolic form, while the
second involves only angles, so is unchanged.

Our mnemonics should enable you to expand your knowledge of plane trigonom-
etry to find whatever you need of spherical and hyperbolic trigonometry. How-
ever, we must confess that in what might be considered a negative review of this
paper, Augustus de Morgan wrote (about Napier’s pentagram) that “mnemon-
ical formulas ... only create confusion instead of assisting the memory” [2]. But
times have changed.
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