Practice problems on Euclidean Geometry and Euclidean Transformations.
Problem 1. Let $A B C$ be a right triangle that is oriented clockwise and has angles of $90^{\circ}, 30^{\circ}, 60^{\circ}$ at the vertices A, B, C.
(i) Identify $R_{C, 120} \circ R_{B, 60}$.
(ii) Identify $R_{C,-120} \circ R_{B,-60} \circ R_{A,-180}$.

Problem 2. Let $A B C D E F$ be a regular hexagon that is oriented clockwise (so that a rotation from A to B to C to D to E to F is clockwise).
(i) Identify $R_{D, 120} \circ R_{A, 60}$.
(ii) Identify $R_{F, 180} \circ \rho_{E D} \circ R_{D, 120}$.

Problem 3. Let $A B C D E F G H$ be a regular octagon that is oriented clockwise (so that a rotation from A to B to C to D to E to F to G to H is clockwise). Write O for the center of the octagon.
Identify the following transformations. For each state whether it is a translation, rotation, reflection, or glide reflection. Write down any point, angle or vector needed to identify the transformation. (For points or vectors that do not have names give a diagram to show how they are found.)
(i) $\rho_{G E} \circ \rho_{G A} \circ \rho_{H D}$
(ii) $\rho_{A E} \circ \rho_{B F}$
(iii) $R_{F, 135} \circ R_{H, 45}$

Problem 4. Let $A B C$ be an equilateral triangle that is oriented clockwise (so that a rotation from A to B to C to A is clockwise).
In the following questions, identify any required lines, points, or vectors by giving either a name or a construction using the named points. For example, you might answer that a line is the perpendicular to $B C$ from A.
(i) $\rho_{A B} \circ \rho_{B C}$ is a rotation. Identify its center and angle.
(ii) $\rho_{A B} \circ \rho_{B C} \circ \rho_{A B}$ is a reflection. Identify its mirror line.
(iii) $\rho_{A B} \circ \rho_{B C} \circ \rho_{C A}$ is a glide reflection $\gamma_{X Y}$. Identify the vector $X Y$.

Problem 5. Let $A B C$ be a triangle with angles of $30^{\circ}, 60^{\circ}$, and 90° at A, B, and C, respectively. Suppose that the triangle is oriented clockwise (so that a rotation from A to B to C to A is clockwise).
In the following questions, identify any required lines, points, or vectors by giving either a name or a construction using the named points. For example, you might answer that a line is the perpendicular to $B C$ from A.
(i) $\rho_{A B} \circ \rho_{A C}$ is a rotation. Identify its center and angle.
(ii) $\rho_{A B} \circ \rho_{A C} \circ \rho_{A B}$ is a reflection. Identify its mirror line.
(iii) $\rho_{A B} \circ \rho_{B C} \circ \rho_{C A}$ is a glide reflection $\gamma_{X Y}$. Identify the segment $X Y$.

Problem 6. CHOOSE ONE OPTION ONLY, there is no extra credit for doing both. Either:
State and prove a theorem that describes the (Euclidean) transformations obtained by combining two reflections.
Or:
Let $A=(0,0), B=(0,2), C=(2,0)$. Let X and Y be the midpoints of the $B C$ and $C A$. Identify the following 2 transformations (giving coordinates for any points or vectors that you use).
(i) $R_{A, 90} \circ \tau_{B C}$
(ii) $\rho_{A B} \circ \rho_{A C} \circ \rho_{X Y}$.

Answer:

Problem 7. CHOOSE ONE OPTION ONLY, there is no extra credit for doing both. Either:

State and prove a theorem that shows that (in Euclidean geometry) every isometry can be formed from at most three reflections.

Or:
Let $A B C$ be an equilateral triangle that is oriented clockwise (so that a rotation from A to B to C to A is clockwise). For the following three transformations, identify any required lines, points, or vectors by giving either a name or a construction using the named points.
(i) $\rho_{A B} \circ \rho_{B C}$ is a rotation. Identify its center and angle.
(ii) $\rho_{A B} \circ \rho_{B C} \circ \rho_{A B}$ is a reflection. Identify its mirror line.
(iii) $\rho_{A B} \circ \rho_{B C} \circ \rho_{C A}$ is a glide reflection $\gamma_{X Y}$. Identify the vector $X Y$.

Answer:
Problem 8. Let $A B C D$ be a square with center O that is oriented counterclockwise (so that a rotation from A to B to C to D is counterclockwise). For the following three transformations, identify any required lines, points, or vectors by giving either a name or a construction using the named points.
(i) $R_{A}\left(90^{\circ}\right) \circ R_{B}\left(90^{\circ}\right)$ is a rotation. Identify its center and angle.
(ii) $\rho_{A D} \circ \rho_{A C} \circ \rho_{A B}$ is a reflection. Identify its mirror line.
(iii) $\rho_{B C} \circ \rho_{B D} \circ \rho_{A C}$ is a glide reflection $\gamma_{X Y}$. Identify the points X and Y.

Answer:
Problem 9. Suppose that A, B, C, and D are the vertices $(0,0),(2,0),(2,2)$, and $(0,2)$ of a square.
(a) The transformation $R_{D, 45} \circ R_{A, 45}$ is a rotation by 90° about a point P. Find the coordinates of P.
(b) The transformation $\rho_{A C} \circ \gamma_{D A}$ can be decomposed as the combination of reflections across 4 mirror lines. Draw a diagram showing A, B, C, and D and the four mirror lines (marked in order by the numbers 1 to 4).
(c) Two of the mirrors in your answer to (b) can be moved so as to give a set of four mirror lines, three of which are parallel such that the combination of the corresponding reflections has the same result as that of (b). Draw a diagram showing these new mirror lines.
(d) The transformation $\rho_{A C} \circ \gamma_{D A}$ (as in (b) and (c)) simplifies to give a rotation by 90° about a center Q. Give coordinates for Q.

