Practice problems on spherical trigonometry.
Problem 1. Find the missing sides and angles in each of the following cases for a spherical triangle $A B C$:
(a) $a=60^{\circ}, \beta=90^{\circ}, \gamma=75^{\circ}$.
(b) $\alpha=65, \beta=85, \gamma=90$.
(c) $a=90, b=60, c=100$.
(d) $\alpha=85, b=95, c=105$.

Problem 2. In a spherical triangle $A B C$ do the following properties hold?
(a) If $A B=A C$ are the base angles at B and C equal?
(b) If the angles at B and C are equal is it true that $A B=A C$?
(c) Do the angles add to 180° ?
(d) Do the sides add to 180° ?
(e) If $C=90^{\circ}$ is it true that $A B^{2}=B C^{2}+C A^{2}$?
(f) Do two triangles with equal corresponding sides have equal corresponding angles?
(g) Do two triangles with equal corresponding angles have equal corresponding sides?

Problem 3. Suppose that P is the north pole and points X and Y in the northern hemisphere are 45° apart and form a triangle $P X Y$ with angles 60° at X and 80° at P. Find the latitude of Y. Can you determine the longitude of Y ?

Problem 4. Two points on the earth have latitude and longitude coordinates as follows: $A=\left(45^{\circ} N, 60^{\circ} W\right)$, $B=\left(60^{\circ} N, 0^{\circ} W\right)$. What direction should a plane fly to follow a great circle route from A to B ? (Give your answer as the angle made to the direction of north at A.)

Problem 5. In a spherical triangle the angles at α, β and γ are $\pi / 5, \pi / 3, \pi / 2$. Find the sum of the sides.
Problem 6. In a right angled spherical triangle $\alpha=a \neq 90^{\circ}$. Find b and c.
Problem 7. In an equilateral spherical triangle show that $\sec \alpha=1+\operatorname{seca}$.
Problem 8. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:
(i) The point X lies on the geodesic from B to C.
(ii) The angles at A, B, and X of the spherical triangle $A B X$ are $60^{\circ}, 60^{\circ}$, and 90°.
(iii) The geodesics $A B$ and $A C$ make an angle of 90°.

Find the measures (in either degrees or radians) of the geodesics $A B, A X, B X, C X$, and $A C$ and find the area of the spherical triangle $A B C$.
Answer:

Problem 9. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:
(i) The point X lies on the geodesic from B to C (between B and C).
(ii) The angles at A, B, and X of the spherical triangle $A B X$ are $60^{\circ}, 45^{\circ}$, and 90°.
(iii) The geodesics $A B$ and $A C$ make an angle of 90°.

Find the measures (in either degrees or radians) of the geodesics $A B, A X, B X, C X$, and $A C$.
Answer:

