Practice problems on spherical trigonometry.

Problem 1. Find the missing sides and angles in each of the following cases for a spherical triangle ABC:

- (a) $a = 60^{\circ}, \beta = 90^{\circ}, \gamma = 75^{\circ}.$
- (b) $\alpha = 65, \beta = 85, \gamma = 90.$
- (c) a = 90, b = 60, c = 100.
- (d) $\alpha = 85$, b = 95, c = 105.

Problem 2. In a spherical triangle ABC do the following properties hold?

- (a) If AB = AC are the base angles at B and C equal?
- (b) If the angles at B and C are equal is it true that AB = AC?
- (c) Do the angles add to 180°?
- (d) Do the sides add to 180°?
- (e) If $C = 90^{\circ}$ is it true that $AB^2 = BC^2 + CA^2$?
- (f) Do two triangles with equal corresponding sides have equal corresponding angles?
- (g) Do two triangles with equal corresponding angles have equal corresponding sides?

Problem 3. Suppose that P is the north pole and points X and Y in the northern hemisphere are 45° apart and form a triangle PXY with angles 60° at X and 80° at P. Find the latitude of Y. Can you determine the longitude of Y?

Problem 4. Two points on the earth have latitude and longitude coordinates as follows: $A = (45^{\circ}N, 60^{\circ}W)$, $B = (60^{\circ}N, 0^{\circ}W)$. What direction should a plane fly to follow a great circle route from A to B? (Give your answer as the angle made to the direction of north at A.)

Problem 5. In a spherical triangle the angles at α , β and γ are $\pi/5$, $\pi/3$, $\pi/2$. Find the sum of the sides.

Problem 6. In a right angled spherical triangle $\alpha = a \neq 90^{\circ}$. Find b and c.

Problem 7. In an equilateral spherical triangle show that $sec\alpha = 1 + seca$.

Problem 8. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:

- (i) The point X lies on the geodesic from B to C.
- (ii) The angles at A, B, and X of the spherical triangle ABX are 60° , 60° , and 90° .
- (iii) The geodesics AB and AC make an angle of 90° .

Find the measures (in either degrees or radians) of the geodesics AB, AX, BX, CX, and AC and find the area of the spherical triangle ABC.

Answer:

Problem 9. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:

- (i) The point X lies on the geodesic from B to C (between B and C).
- (ii) The angles at A, B, and X of the spherical triangle ABX are 60° , 45° , and 90° .
- (iii) The geodesics AB and AC make an angle of 90° .

Find the measures (in either degrees or radians) of the geodesics AB, AX, BX, CX, and AC.

Answer: