Practice problems on inversive geometry.
Problem 1 Let l be a line that does not pass through the origin. Consider the transformation of inversion in the unit circle (centered at the origin). Let l^{*} be the inverse of l. Prove that l^{*} is a circle.

Problem 2 Suppose that P and Q are points. Prove that the locus of all points R with $Q R / P R=2$ is a circle.
Problem 3 Let C be a circle that does not pass through the origin. Consider the transformation of inversion in the unit circle (centered at the origin). Let C^{*} be the inverse of C. Prove that C^{*} is a circle.

Problem 4 Find a formula for $F(z)$ where F is a Mobius transformation with $F(-2 i)=0, F(2)=2$, and $F(1-i)=1-i$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem $5 \quad$ Find a formula for $F(z)$ where F is a Mobius transformation with $F(0)=-2 i, F(2)=2$, and $F(1-i)=1-i$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem 6 (a) Do the four points $2,-2,2+3 i$, and $1+4 i$ lie on a circle. (You must explain your answer to get any credit!)
(b) Describe the image curve that is obtained when the y-axis (the imaginary axis) is transformed by using the Mobius transformation:

$$
M(z)=\frac{i z+1}{z+1}
$$

(You must completely describe the image curve. It is not enough just to say that it is a line or to say that it is a circle. You should give details of the slope, center or other features that completely describe the curve.)

Problem 7 (a) Do the four points $2,-2,2+3 i$, and $1+3 i$ lie on a circle. (You must explain your answer to get any credit!)
(b) Describe the image curve that is obtained when the y-axis (the imaginary axis) is transformed by using the Mobius transformation:

$$
M(z)=\frac{-i z+1}{z+1}
$$

(You must completely describe the image curve. It is not enough just to say that it is a line or to say that it is a circle. You should give details of the slope, center or other features that completely describe the curve.)

Problem 8 Find a formula for $F(z)$ where F is a Mobius transformation with $F(1)=\infty, F(2)=1$, and $F(i)=2$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem $9 \quad$ Find a formula for $F(z)$ where F is a Mobius transformation with $F(1)=\infty, F(2)=0$, and $F(i)=2$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem $10 \quad$ Find a formula for $F(z)$ where F is a Mobius transformation with $F(1)=\infty, F(2)=1$, and $F(i)=3$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem $11 \quad$ Suppose that the points P and Q are inverses with respect to a circle Σ.
(i) Let f be an inversive transformation that transforms Σ to a circle. Prove that f transforms P and Q to points that are inverse with respect to $f(\Sigma)$.
(ii) Suppose that g is an inversive transformation that transforms Σ to a line. Explain the relationship between $g(P)$ and $g(Q)$.

Problem 12 Suppose that a pair of orthogonal circles meet at the points O and P. Suppose that a third circle C intersects the first circle orthogonally at X and the second circle orthogonally at Y.
(i) Consider an inversion centered at O. Draw a diagram to indicate the images of the three circles and mark the inverses P^{\prime}, X^{\prime}, and Y^{\prime} of the three points P, X, and Y.
(ii) Explain briefly why $X^{\prime} Y^{\prime}$ must be a diameter of the circle that passes through P^{\prime}, X^{\prime}, and Y^{\prime}.
(iii) Determine the angle between the circle that passes through P, X, and Y and the circle C. (Hint: Can you find the angle between the inverses of these curves.)

Problem 13 Suppose that P is a point outside the circle Σ. Let O be the center of Σ. Let the tangents from P meet Σ at X and Y. Let $X Y$ meet $O P$ at Z.
Prove that P and Z are inverse points with respect to Σ.
Problem 14 Find a formula for $F(z)$ where F is a Mobius transformation with $F(\infty)=1, F(1)=2$, and $F(4)=i$. (Write your answer as a function $F(z)$ that has the form $\frac{a z+b}{c z+d}$.)

Problem 15 Suppose that three circles, a, b, and c all pass through the points P and Q. Let d be a circle orthogonal to both a and b.
(i) Consider an inversion centered at P. Draw a diagram to indicate the images of the four circles a, b, c, and d. Mark the inverse Q^{\prime}.
(ii) Prove that d must be orthogonal to c.
(iii) If the circles a, b and c are considered as fixed, how many different circles could play the role of d ?

Problem 16 Let P, Q, and R be the points $-1+i, 1-i,-1-2 i$ of the extended complex plane \widehat{C}.
(i) Find a formula for a Mobius transformation $F(z)$ with $F(0)=P, F(1)=Q$, and $F(\infty)=R$.
(ii) Give a short calculation which proves that the point -2 lies on the generalized circle through P, Q, and R.

Problem 17 Let C_{1}, C_{2}, and C_{3} be three circles that touch each other externally in pairs. (In other words, C_{1} touches C_{2} at a point Z, C_{2} touches C_{3} at a point X, and C_{3} touches C_{1} at a point Y.)
Let D be a small circle in the region between C_{1}, C_{2}, and C_{3} that touches all three circles.
(i) Draw a diagram of the four circles C_{1}, C_{2}, C_{3} and D.
(ii) Draw a diagram that shows the images of the four circles under an inversion centered at the point X where C_{2} and C_{3} touch. Explain briefly why the images are as you have shown them.
(iii) Prove that there is a generalized circle G that touches both C_{2} and C_{3} at X and is orthogonal to both C_{1} and D.
(Extra credit:) How many generalized circles meet the requirements on G ? (Why?) In what circumstances is G a straight line?

Problem $18 \quad$ Find a formula for $F(z)$ where F is a Mobius transormation with $F(1)=i, F(2)=-1$, and $F(3)=-i$.

Problem 19 Define the cross ratio $(a, b: c, d)$ of four points a, b, c, d. Prove that the cross ratio is a Mobius invariant.

Problem 20 Assume that the Mobius transformation $F(z)=\frac{-i z}{z-2 i}$ transforms the circle C with equation $x^{2}+(y-1)^{2}=1$ to the x-axis.
(i) Write down a formula for the inverse Mobius transformation F^{-1}.
(ii) Let R_{x} be the transformation of reflection across the x-axis. How can inversion across C be obtained from R_{x}, F, and F^{-1}.
(iii) Find a formula for the transformation of inversion across C.
(iv) Find the inverse of i across the circle C.

Problem 21 Let C be the circumcircle of the triangle with vertices at $1, i$ and $-i$. Find a formula for $F(z)$ where F is a Mobius transformation that transforms C to the x-axis.

Problem 22 Given two circles C_{1} and C_{2} and a point P. Prove that there is a cline C that passes through P and is orthogonal to both C_{1} and C_{2}.

Problem 23 Find a formula for $F(z)$ where F is a Mobius transformation with $F(2)=5, F(4)=0$, and $F(8)=3$.

