The following problems are exercises in hyperbolic trigonometry. You should use the following trigonometric formulas that we proved in class.
In a hyperbolic right angle triangle with hypotenuse c, legs a and b and angle A opposite the side a :

$$
\begin{aligned}
& \cosh (c)=\cosh (a) \cosh (b) \\
& \sin (A)=\sinh (a) / \sinh (c) \\
& \cos (A)=\tanh (b) / \tanh (c)
\end{aligned}
$$

In a hyperbolic triangle with sides a, b, and c and angles A, B, C opposite these sides:

$$
\begin{gathered}
\frac{\sinh (a)}{\sin (A)}=\frac{\sinh (b)}{\sin (B)}=\frac{\sinh (c)}{\sin (C)} \\
\cosh (c)=\cosh (a) \cosh (b)-\sinh (a) \sinh (b) \cos (C) \\
\cos (C)=-\cos (A) \cos (B)+\sin (A) \sin (B) \cosh (c)
\end{gathered}
$$

Problem 1 In a hyperbolic right angled triangle the two legs have hyperbolic lengths of 3 and 4 . What is the hyperbolic length of the hypotenuse? Is this larger than, or smaller than 5 ?

Problem 2 A hyperbolic triangle has two sides with hyperbolic lengths 1 and 2. The included angle is 60°. Find the length of the other side. Find the other two angles.

Problem 3 A hyperbolic quadrilateral has four equal sides and four angles of 60°. Find the length of its sides. Is the quadrilateral cyclic?

Problem 4 Consider a regular hexagon that has angles of 90° (in hyperbolic geometry). Calculate the length of a side of the hexagon. (Hint: Does it help to consider the center of a circle that passes through the vertices of the hexagon?)

Problem 5 Suppose that an equilateral triangle (in hyperbolic geometry) has sides of length a. Determine $\sinh (R)$, where R is the radius of a cicumscribed circle.

