Solutions

Wednesday, March 28, 2018
Problem 1. A spherical triangle has an area of 45°. Two of its angles are 60° and 45°.
(a) Find the third angle of the triangle.

Answer:

The area is 180° less than the angle sum, which must be 225°. Hence the third angle is 120°.
(b) Find the cosine of the (arc) length of the side opposite the angle angle you just found.

Answer:

Let $A=120^{\circ}, B=60^{\circ}$ and $C=45^{\circ}$ be the angles of the triangle. The polar law of cosines gives:

$$
\cos A+\cos B \cos C=\sin B \sin C \cos a
$$

. Hence:

$$
-\frac{1}{2}+\frac{1}{2} \times \frac{1}{\sqrt{2}}=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} \cos a
$$

This gives

$$
\cos a=\frac{1-\sqrt{2}}{\sqrt{3}}
$$

Problem 2. A plane is to fly a geodesic route from Sydney, Australia with latitude $30^{\circ} S$ and longitude $150^{\circ} E$ to Bogota, Colombia with latitude $0^{\circ} N$ and longitude $75^{\circ} \mathrm{W}$. The radius of the earth is $R \approx 4000$ miles.
(a) Draw a diagram of a spherical triangle with vertices B, N, S that represent Bogota, the north pole and Sydney. Mark values for those sides and angles that follow immediately from the latitudes and longitudes.

Answer:

The following diagrams show the triangle $N B S$ and also its polar triangle $Y Z X$. The polar triangle has a right angle and therefore has a Napier pentagram which is also shown. Note that travelling towards the east from S to B gives an angle $N=135^{\circ}$ whereas travelling towards the west would give an angle $360^{\circ}-135^{\circ}=225^{\circ}$. The easterly direction must be used for the geodesic.

(b) Give a formula for the length of the flight. Your formula should be written as a multiple of R and this multiple should be left in terms of π and a single inverse trig functions. (Do not use a calculator to give an exact answer.)

Answer:

We need to find n in triangle $N B S$. This is the supplement of Y in the polar triangle. Napier's pentagram gives

$$
\cos Y=\sin (90-Y)=\cos 30 \cos 45=\sqrt{\frac{3}{8}}
$$

We deduce that $n=\pi-\cos ^{-1} \sqrt{3 / 8}$ and therefore the distance from Syndney to Bogota is $R\left(\pi-\cos ^{-1} \sqrt{3 / 8}\right)$.
(c) Give the direction in which the plane should leave from Sydney. Write this as a number of degrees east or west of north. The number of degrees should be written as a single inverse trig function and you should specify whether the flight is directed east or west of north. (Do not use a calculator to give an exact answer.)

Answer:

We need to find angle S or its supplement x. Napier's pentagram gives $\sin 30=\tan 45 \cot x$. Hence $\tan x=$ $\tan 45 / \sin 30=2$.
We deduce that the angle the plane should leave from Sydney is $180^{\circ}-\tan ^{-1} 2$ to the East of North.
Problem 3. A (badly drawn) figure of eight is formed by a circle with center $(0,-2)$ and radius 3 and a circle with center $(0,3)$ and radius 2 . An inversion transforms the figure of eight into two parallel lines that are 5 units apart.
(a) What is the center of the inversion? (Write the coordinates of a point for your answer.)

Answer: If the circles are both transformed to lines the center of inversion must be a point that lies on both. The two circles touch at $(0,1)$ and this must be the center of inversion.
(b) What is the radius of inversion?

Answer:
The figure of eight curve is inverted to two lines parallel to the x-axis (because the common diameter of its circles is the y-axis).
If r is the radius of inversion then the points $(0,5)$ and $(0,-5)$ which lie on the figure of eight curve invert to points on the y-axis that are $r^{2} / 4$ and $r^{2} / 6$ units above and below the center of inversion. Therefore, $r^{2} / 4+r^{2} / 6=5$. Hence, $r^{2}=12$.
We deduce that the radius of inversion is $\sqrt{12}$.
Problem 4. Suppose that a diagram is made from two orthogonal circles that meet at points A and B and another circle that passes through B and meets the original pair of circles at two other points C and D.
(a) Draw the figure obtained by applying an inversion centered at A to the diagram.
(b) Draw the figure obtained by applying an inversion centered at B to the original diagram.

Answer: The following diagrams show the original configuration and its inversions relative to centers at A and B.

Original diagram

Inversion with center A

Inversion with center B
(c) Write a definition for the cross ratio of 4 points $(U, V: W, X)$.

Answer:

$$
(U, V: W, X)=\frac{U W \times V X}{U X \times V W}
$$

(d) Suppose that A, B, C and D are the points mentioned in the original diagram. Prove that:

$$
(A, C: D, B)^{2}+(A, D: C, B)^{2}=1
$$

Answer:

Consider an inversion with center B. Recall that the distance bewteen a pair of inverse points is given by:

$$
X^{\prime} Y^{\prime}=\frac{r^{2} X Y}{B X \times B Y}
$$

However, as above the inverse diagram is a right triangle. Pythagoras gives:

$$
\left(A^{\prime} C^{\prime}\right)^{2}+\left(A^{\prime} D^{\prime}\right)^{2}=\left(C^{\prime} D^{\prime}\right)^{2}
$$

Hence,

$$
\frac{A C^{2}}{B A^{2} B C^{2}}+\frac{A D^{2}}{B A^{2} B D^{2}}=\frac{C D^{2}}{B C^{2} B D^{2}}
$$

If we divide through by the right hand side $\frac{C D^{2}}{B C^{2} B D^{2}}$, we get: $(A, C: D, B)^{2}+(A, D: C, B)^{2}=1$.

