QUEENS COLLEGE
Math 618
Solutions
$6.00 \mathrm{pm}-7.30 \mathrm{pm}$, Wednesday, May 18, 2016
Problem 1. A hyperbolic triangle $A B C$ has a right angle at C and sides with hyperbolic lengths a, b, c opposite angles $A, B, C=90^{\circ}$, respectively. The point X on the hypotenuse $A B$ is the foot of a perpendicular from C. The hyperbolic length of $C X$ is h.
Given that $\cosh (a)=3$ and $\cosh (b)=5$:
(i) Find $\sinh (a)$ and $\sinh (b)$. (These are both square roots of fractions, which you should give in their standard lowest terms.)
Answer:
$\sinh (a)=\sqrt{8}$ and $\sinh (b)=\sqrt{24}$.
(ii) Find $\tan (A)$. (This is the square root of a fraction, which you should give in its standard lowest terms.)

Answer:
$\tan (A)=\sqrt{\frac{1}{27}}$.
(iii) Find $\sinh (h)$. (This is the square root of a fraction, which you should give in its standard lowest terms.)

Answer:
$\sinh (h)=\sqrt{\frac{6}{7}}$.
Problem 2. Consider points $A=(1,3)$ and $B=(2,4)$ in the hyperbolic plane.
(i) Find the hyperbolic distance x between A and B. (This is the natural \log of a fraction, Give the answer in these terms.)
Answer:
$\ln \left(\frac{3}{2}\right)$
(ii) Find $\cosh (x)$.

Answer:
$\frac{13}{12}$
(iii) Find the angles between the hyperbolic line $A B$ and the verticals at A and B. (Write your answers as inverse cosines.)
Answer:
$\cos ^{-1}\left(\frac{-3}{5}\right)$ and $\cos ^{-1}\left(\frac{4}{5}\right)$.
(iv) Find the hyperbolic area of the region above $A B$ that lies between the vertical geodesics at A and B. (Leave your answers as a combination of two inverse trig functions.)
Answer:
$\cos ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{4}{5}\right)$.
Problem 3. What do we mean by a hyperbolic reflection across a curved geodesic?

Answer:

An inversion across the curved geodesic.
Prove the theorem that shows that a hyperbolic reflection is an isomtery.

Answer:

This is Theorem 4.4.1 on page 60 of the text.
Problem 4. Let $A B C$ be the triangle with vertices $A=(0,0), B=(16,12), C=(25,0)$. If l is a line we write ρ_{l} for the reflection across l.
(i) The combination $\rho_{A C} \circ \rho_{A B}$ is a rotation. Identify its center and the sine of its angle.

Answer:
The center is A and the angle has sine $\frac{-24}{25}$.
(ii) The combination $\rho_{A B} \circ \rho_{A C} \circ \rho_{B C}$ is a glide reflection $\gamma_{X, Y}$. Give coordinates for the points X and Y.

Answer:
The points X and Y could be $(16,12)$ and $(16,-12)$. (Some other answers are also possible.)

