QUEENS COLLEGE
Department of Mathematics
Math 618
Final Exam Exam Spring 2015
05.20 .15

Solutions
4pm - 6pm, Campbell Dome, Wednesday, May 20, 2015
Problem 1. Mark each as true or false:
(a) A combination of three glide reflections can never simplify to give a rotation.

F
(b) A spherical triangle with 3 equal sides need not have 3 equal angles.

F
(c) Inversion increases distances between points.

F
(d) For any x, we have: $\operatorname{csch}^{2} x=1+\operatorname{coth}^{2} x$.

F
(e) The hypotenuse of a right triangle can always be determined from the two legs in spherical geometry and in hyperbolic geometry.
T
(f) In hyperbolic geometry a quadrilateral with four equal sides cannot have two of its angles as right angles. F

Problem 2. Let $A=(0,0), B=(1,0), C=(1,1), D=(0,1)$ be the vertices of a square.
Let $X_{1}, X_{2}, X_{3}, X_{4}$ be combinations of reflections given by:

$$
\begin{gathered}
X_{1}=\rho_{C D} \circ \rho_{A C} \circ \rho_{B C} \\
X_{2}=\rho_{A D} \circ \rho_{A B} \circ \rho_{B D} \\
X_{3}=\rho_{C D} \circ \rho_{A C} \circ \rho_{D B} \circ \rho_{A B} \\
X_{4}=\rho_{D A} \circ \rho_{C D} \circ \rho_{B C} \circ \rho_{A B}
\end{gathered}
$$

Which if any of $X_{1}, X_{2}, X_{3}, X_{4}$ are:
(a) The identity?

None
(b) A reflection? For each of the transformations that is a reflection give the equation for a mirror line.
X_{1}, mirror line $y=x$.
(c) A rotation? For each of the transformations that is a rotation give coordinates for the center and the directed angle.
X_{3}, center (.5,.5) angle 180°
(d) A translation? For each of the transformations that is a translation give coordinates for its vector.
X_{4}, vector $(-2,2)$.
(e) A glide reflection? For each of the transformations that is a glide reflection give the equations for three mirrors (two parallel and one perpendicular) that define it.
X_{2}, mirrors $y=1-x, y=-x, y=x$.
(f) A dilation? For each of the transformations that is a dilation give coordinates for the center and the scale factor.

None
Problem 3. Two points on the earth have latitude and longitude coordinates as follows: $A=\left(45^{\circ} N, 45^{\circ} \mathrm{W}\right)$, $B=\left(30^{\circ} N, 45^{\circ} E\right)$.
(a) A plane is to fly the great circle route from A to B. Let α be the angle made from its path to the direction of north at A. Find $\tan \alpha$.
$\tan \alpha=\sqrt{\frac{2}{3}}$.
(b) Another plane is to fly the great circle route from B to A. Let β be the angle made from its path to the direction of north at B. Find $\tan \beta$.
$\tan \beta=2$.
Problem 4. A hyperbolic triangle $A B C$ has a right angle at A and angles of 30° at B and 45° at C. Find the values of $\cosh (a), \sinh (a), \cosh (b), \sinh (b), \cosh (c)$ and $\sinh (c)$.
Answer:
$\cosh (a)=\sqrt{3}, \sinh (a)=\sqrt{2}, \cosh (b)=\sqrt{\frac{3}{2}}, \sinh (b)=\sqrt{\frac{1}{2}}, \cosh (c)=\sqrt{2}$ and $\sinh (c)=1$.
Problem 5. State and prove a theorem about the relationship between orthogonal circles and the effect of inversion of one of the circles across the other.

Problem 6. A hyperbolic isosceles triangle has sides with lengths $a=\cosh ^{-1} 3, b=\cosh ^{-1} \sqrt{5}, c=\cosh ^{-1} \sqrt{5}$. Find the angles of the triangle. (You can leave your answers in terms of inverse trig functions, unless they happen to simplify to give a standard angle.)
Answer:
$60^{\circ}, \cos ^{-1} \sqrt{\frac{5}{8}}, \cos ^{-1} \sqrt{\frac{5}{8}}$.
Problem 7. Find the area of the quadrilateral in the hyperbolic plane with vertices $A=(0,1), B=(1,2)$, $C=(1,3), D=(0,4)$. (Leave your answer as a sum or difference of inverse trig functions.)

Answer:

$\sin ^{-1} \frac{2}{\sqrt{5}}-\sin ^{-1} \frac{1}{\sqrt{5}}-\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{3}{5}$

