QUEENS COLLEGE	Department of Mathematics		
Math 618	Final Exam Exam	Spring 2015	05.20.15
0.1			

Solutions

4pm – 6pm, Campbell Dome, Wednesday, May 20, 2015

Problem 1. Mark each as true or false:

(a) A combination of three glide reflections can never simplify to give a rotation.

\mathbf{F}

(b) A spherical triangle with 3 equal sides need not have 3 equal angles.

\mathbf{F}

(c) Inversion increases distances between points.

\mathbf{F}

(d) For any x, we have: $\operatorname{csch}^2 x = 1 + \operatorname{coth}^2 x$.

\mathbf{F}

(e) The hypotenuse of a right triangle can always be determined from the two legs in spherical geometry and in hyperbolic geometry.

Т

(f) In hyperbolic geometry a quadrilateral with four equal sides cannot have two of its angles as right angles. **F**

Problem 2. Let A = (0,0), B = (1,0), C = (1,1), D = (0,1) be the vertices of a square. Let X_1, X_2, X_3, X_4 be combinations of reflections given by:

 $X_{1} = \rho_{CD} \circ \rho_{AC} \circ \rho_{BC}$ $X_{2} = \rho_{AD} \circ \rho_{AB} \circ \rho_{BD}$ $X_{3} = \rho_{CD} \circ \rho_{AC} \circ \rho_{DB} \circ \rho_{AB}$

 $X_4 = \rho_{DA} \circ \rho_{CD} \circ \rho_{BC} \circ \rho_{AB}$

Which if any of X_1, X_2, X_3, X_4 are:

(a) The identity?

None

(b) A reflection? For each of the transformations that is a reflection give the equation for a mirror line.

X_1 , mirror line y = x.

(c) A rotation? For each of the transformations that is a rotation give coordinates for the center and the directed angle.

 X_3 , center (.5, .5) angle 180°

(d) A translation? For each of the transformations that is a translation give coordinates for its vector.

X_4 , vector (-2, 2).

(e) A glide reflection? For each of the transformations that is a glide reflection give the equations for three mirrors (two parallel and one perpendicular) that define it.

 X_2 , mirrors y = 1 - x, y = -x, y = x.

(f) A dilation? For each of the transformations that is a dilation give coordinates for the center and the scale factor. **None**

Problem 3. Two points on the earth have latitude and longitude coordinates as follows: $A = (45^{\circ}N, 45^{\circ}W)$, $B = (30^{\circ}N, 45^{\circ}E)$.

(a) A plane is to fly the great circle route from A to B. Let α be the angle made from its path to the direction of north at A. Find $\tan \alpha$.

 $\tan \alpha = \sqrt{\frac{2}{3}}.$

(b) Another plane is to fly the great circle route from B to A. Let β be the angle made from its path to the direction of north at B. Find $\tan \beta$.

 $\tan\beta = 2.$

Problem 4. A hyperbolic triangle ABC has a right angle at A and angles of 30° at B and 45° at C. Find the values of $\cosh(a)$, $\sinh(a)$, $\cosh(b)$, $\sinh(b)$, $\cosh(c)$ and $\sinh(c)$.

Answer:

 $\cosh(a) = \sqrt{3}, \ \sinh(a) = \sqrt{2}, \ \cosh(b) = \sqrt{\frac{3}{2}}, \ \sinh(b) = \sqrt{\frac{1}{2}}, \ \cosh(c) = \sqrt{2} \text{ and } \sinh(c) = 1.$

Problem 5. State and prove a theorem about the relationship between orthogonal circles and the effect of inversion of one of the circles across the other.

Problem 6. A hyperbolic isosceles triangle has sides with lengths $a = \cosh^{-1}3$, $b = \cosh^{-1}\sqrt{5}$, $c = \cosh^{-1}\sqrt{5}$. Find the angles of the triangle. (You can leave your answers in terms of inverse trig functions, unless they happen to simplify to give a standard angle.)

Answer:

$$60^{\circ}, \cos^{-1}\sqrt{\frac{5}{8}}, \cos^{-1}\sqrt{\frac{5}{8}}.$$

Problem 7. Find the area of the quadrilateral in the hyperbolic plane with vertices A = (0,1), B = (1,2), C = (1,3), D = (0,4). (Leave your answer as a sum or difference of inverse trig functions.)

Answer:

 $\sin^{-1}\frac{2}{\sqrt{5}} - \sin^{-1}\frac{1}{\sqrt{5}} - \sin^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5}$