QUEENS COLLEGE

Department of Mathematics

Math 618

Second Midterm Exam Spring 2015

05.13.15

Solutions

6.00pm - 7.30pm, Wednesday, May 13, 2015

Problem 1. (10 points) State and prove a theorem that shows that (in Euclidean geometry) every isometry can be formed as a combination of at most three reflections.

Problem 2. (10 points) Let ABC be the triangle with vertices $A = (0,0), B = (1,\sqrt{3}), C = (0,\sqrt{3}).$

(i) The combination $\rho_{AB} \circ \rho_{AC}$ is a rotation. Identify its center and angle.

Answer:

Center: A

angle: -60° .

(ii) The combination $\rho_{AB} \circ \rho_{AC} \circ \rho_{BC}$ is a glide reflection $\gamma_{X,Y}$. Give coordinates for the points X and Y.

Answer:

$$X = (0, \sqrt{3}), Y = (\frac{3}{2}, \frac{\sqrt{3}}{2}).$$

Problem 3. (10 points) A hyperbolic triangle ABC has sides with lengths a, b, c opposite angles α , β , γ , respectively. Given that $\sinh(a) = 1$, $\cosh(c) = \sqrt{3}$, $\beta = 30^{\circ}$.

(i) Find cosh(a) and sinh(c). (You must simplify these answers to get full credit!)

Answer:

 $\cosh a = \sqrt{2}, \sinh c = \sqrt{2}.$

(ii) Find $\cosh(b)$ and $\sinh(b)$. (You must simplify these answers to get full credit!)

Answer:
$$\cosh(b) = \sqrt{\frac{3}{2}}, \sinh(b) = \sqrt{\frac{1}{2}}.$$

(iii) Find $\sin(\gamma)$. (You must simplify this answer to get full credit!)

Answer:

 $\sin(\gamma) = 1.$

Problem 4. (10 points) A triangle ABC has a right angle at A and an angle of 45° at B. Give formulas for the length of AC and the angle at C in the following three situations.

(i) The geometry is Euclidean and $AB = \frac{1}{2}$.

Answer:

$$C = 45^{\circ}, b = \frac{1}{2}.$$

(ii) The geometry is spherical and $sin(AB) = \frac{1}{2}$.

Answer:

$$C = \cos^{-1}(\frac{\sqrt{3}}{\sqrt{8}}), b = \tan^{-1}\frac{1}{2}.$$

(iii) The geometry is hyperbolic and $\sinh(AB) = \frac{1}{2}$.

Answer:

$$C = \cos^{-1}(\frac{\sqrt{5}}{\sqrt{8}}), b = \tanh^{-1}\frac{1}{2}.$$

Problem 5. (10 points) Consider the points A = (0,2), B = (0,4) and C = (1,3) as points in the hyperbolic plane. Let γ be the geodesic from A to B and let δ be the geodesic from B to C.

(i) Calculate the hyperbolic length of γ . (Leave your answer in terms of the function ln but simplify all other terms.)

Answer:

ln2

(ii) Calculate the hyperbolic length of δ . (Leave your answer in terms of the function ln but simplify all other terms.)

Answer:

 $\ln \frac{3}{2}$

(iii) Calculate the hyperbolic angle of triangle ABC at B. (This is an angle between γ and δ .) Leave your answer in terms of the function \cos^{-1} but simplify all other terms.

Answer:

$$\cos^{-1}\frac{3}{5}$$