QUEENS COLLEGE
Math 618
Solutions
$6.00 \mathrm{pm}-7.30 \mathrm{pm}$, Wednesday, May 13, 2015
Problem 1. (10 points) State and prove a theorem that shows that (in Euclidean geometry) every isometry can be formed as a combination of at most three reflections.
Problem 2. (10 points) Let $A B C$ be the triangle with vertices $A=(0,0), B=(1, \sqrt{3}), C=(0, \sqrt{3})$.
(i) The combination $\rho_{A B} \circ \rho_{A C}$ is a rotation. Identify its center and angle.

Answer:

Center: A
angle: -60°.
(ii) The combination $\rho_{A B} \circ \rho_{A C} \circ \rho_{B C}$ is a glide reflection $\gamma_{X, Y}$. Give coordinates for the points X and Y.

Answer:
$X=(0, \sqrt{3}), Y=\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$.
Problem 3. (10 points) A hyperbolic triangle $A B C$ has sides with lengths a, b, c opposite angles α, β, γ, respectively. Given that $\sinh (a)=1, \cosh (c)=\sqrt{3}, \beta=30^{\circ}$.
(i) Find $\cosh (a)$ and $\sinh (c)$. (You must simplify these answers to get full credit!)

Answer:

$\cosh a=\sqrt{2}, \sinh c=\sqrt{2}$.
(ii) Find $\cosh (b)$ and $\sinh (b)$. (You must simplify these answers to get full credit!)

Answer: $\cosh (b)=\sqrt{\frac{3}{2}}, \sinh (b)=\sqrt{\frac{1}{2}}$.
(iii) Find $\sin (\gamma)$. (You must simplify this answer to get full credit!)

Answer:

$\sin (\gamma)=1$.
Problem 4. (10 points) A triangle $A B C$ has a right angle at A and an angle of 45° at B. Give formulas for the length of $A C$ and the angle at C in the following three situations.
(i) The geometry is Euclidean and $A B=\frac{1}{2}$.

Answer:
$C=45^{\circ}, b=\frac{1}{2}$.
(ii) The geometry is spherical and $\sin (A B)=\frac{1}{2}$.

Answer:
$C=\cos ^{-1}\left(\frac{\sqrt{3}}{\sqrt{8}}\right), b=\tan ^{-1} \frac{1}{2}$.
(iii) The geometry is hyperbolic and $\sinh (A B)=\frac{1}{2}$.

Answer:

$C=\cos ^{-1}\left(\frac{\sqrt{5}}{\sqrt{8}}\right), b=\tanh ^{-1} \frac{1}{2}$.
Problem 5. (10 points) Consider the points $A=(0,2), B=(0,4)$ and $C=(1,3)$ as points in the hyperbolic plane. Let γ be the geodesic from A to B and let δ be the geodesic from B to C.
(i) Calculate the hyperbolic length of γ. (Leave your answer in terms of the function \ln but simplify all other terms.)

Answer:

$\ln 2$
(ii) Calculate the hyperbolic length of δ. (Leave your answer in terms of the function $l n$ but simplify all other terms.)

Answer:
$\ln \frac{3}{2}$
(iii) Calculate the hyperbolic angle of triangle ABC at B . (This is an angle between γ and δ.) Leave your answer in terms of the function $\cos ^{-1}$ but simplify all other terms.
Answer:
$\cos ^{-1} \frac{3}{5}$

