QUEENS COLLEGEDepartment of MathematicsMath 618Second Midterm (Early Alternate) ExamSpring 201505.11.15Solutions

5pm - 6.30pm, Monday, May 11, 2015

Problem 1. (10 points) Prove the theorem which states that an inversion whose center lies on the x-axis is a hyperbolic isometry.

Problem 2. (10 points) Let ABC be the triangle with vertices $A = (0,0), B = (\sqrt{3},1), C = (\sqrt{3},0).$ (i) The combination $\rho_{AB} \circ \rho_{AC}$ is a rotation. Identify its center and angle.

Answer:

Center: A

angle: 60° .

(ii) The combination $\rho_{AB} \circ \rho_{AC} \circ \rho_{BC}$ is a glide reflection $\gamma_{X,Y}$. Give coordinates for the points X and Y.

Answer:

 $X = (\sqrt{3}, 0), Y = (\frac{\sqrt{3}}{2}, \frac{3}{2}).$

Problem 3. (10 points) A hyperbolic triangle ABC has sides with lengths a, b, c opposite angles α , β , γ , respectively. Given that $\sinh(a) = 1$, $\cosh(c) = \sqrt{3}$, $\beta = 45^{\circ}$.

(i) Find $\cosh(a)$ and $\sinh(c)$. (You must simplify these answers to get full credit!)

Answer:

 $\cosh a = \sqrt{2}, \sinh c = \sqrt{2}.$

(ii) Find $\cosh(b)$ and $\sinh(b)$. (You must simplify these answers to get full credit!)

Answer:

 $\cosh(b) = \sqrt{6} - 1$, $\sinh(b) = \sqrt{7 - 2\sqrt{6}}$.

(iii) Find $\sin(\gamma)$. (You must simplify this answer to get full credit!)

Answer:

 $\sin(\gamma) = \frac{1}{\sqrt{7 - 2\sqrt{6}}}.$

Problem 4. (10 points) A triangle ABC has a right angle at A and an angle of 30° at B. Give formulas for the length of AC and the angle at C in the following three situations.

(i) The geometry is Euclidean and $AB = \frac{1}{\sqrt{2}}$.

Answer:

 $C = 60^{\circ}, \ b = \frac{1}{\sqrt{6}}.$

(ii) The geometry is spherical and $AB = 45^{\circ}$.

Answer:

 $C = \cos^{-1}(\frac{1}{\sqrt{8}}), \ b = \tan^{-1}\frac{1}{\sqrt{6}}.$

(iii) The geometry is hyperbolic and $\sinh AB = \frac{1}{\sqrt{2}}$.

Answer:

 $C = \cos^{-1}(\frac{\sqrt{3}}{\sqrt{8}}), \ b = \tanh^{-1}\frac{1}{\sqrt{6}}.$

Problem 5. (10 points) Consider the points A = (0, 2), B = (0, 4) and C = (1, 3) as points in the hyperbolic plane. Let γ be the geodesic from A to B and let δ be the geodesic from A to C.

(i) Calculate the hyperbolic length of γ . (Leave your answer in terms of the function ln but simplify all other terms.) Answer:

 $\ln 2$

(ii) Calculate the hyperbolic length of δ . (Leave your answer in terms of the function ln but simplify all other terms.)

Answer:

 $\ln \frac{3(\sqrt{13}+3)}{2(\sqrt{13}+2)}$

(iii) Calculate the angle of the hyperbolic triangle ABC at A. This is between δ and γ . (Leave your answer in terms of the function \cos^{-1} but simplify all other terms.)

Answer:

 $\cos^{-1}\frac{3}{\sqrt{13}}$