QUEENS COLLEGE
Department of Mathematics
Math 618
Second Midterm (Early Alternate) Exam Spring 2015
05.11 .15

Solutions
5pm - 6.30pm, Monday, May 11, 2015
Problem 1. (10 points) Prove the theorem which states that an inversion whose center lies on the x-axis is a hyperbolic isometry.
Problem 2. (10 points) Let $A B C$ be the triangle with vertices $A=(0,0), B=(\sqrt{3}, 1), C=(\sqrt{3}, 0)$.
(i) The combination $\rho_{A B} \circ \rho_{A C}$ is a rotation. Identify its center and angle.

Answer:
Center: A
angle: 60°.
(ii) The combination $\rho_{A B} \circ \rho_{A C} \circ \rho_{B C}$ is a glide reflection $\gamma_{X, Y}$. Give coordinates for the points X and Y.

Answer:
$X=(\sqrt{3}, 0), Y=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$.
Problem 3. (10 points) A hyperbolic triangle $A B C$ has sides with lengths a, b, c opposite angles α, β, γ, respectively. Given that $\sinh (a)=1, \cosh (c)=\sqrt{3}, \beta=45^{\circ}$.
(i) Find $\cosh (a)$ and $\sinh (c)$. (You must simplify these answers to get full credit!)

Answer:

$\cosh a=\sqrt{2}, \sinh c=\sqrt{2}$.
(ii) Find $\cosh (b)$ and $\sinh (b)$. (You must simplify these answers to get full credit!)

Answer:
$\cosh (b)=\sqrt{6}-1, \sinh (b)=\sqrt{7-2 \sqrt{6}}$.
(iii) Find $\sin (\gamma)$. (You must simplify this answer to get full credit!)

Answer:
$\sin (\gamma)=\frac{1}{\sqrt{7-2 \sqrt{6}}}$.
Problem 4. (10 points) A triangle $A B C$ has a right angle at A and an angle of 30° at B. Give formulas for the length of $A C$ and the angle at C in the following three situations.
(i) The geometry is Euclidean and $A B=\frac{1}{\sqrt{2}}$.

Answer:
$C=60^{\circ}, b=\frac{1}{\sqrt{6}}$.
(ii) The geometry is spherical and $A B=45^{\circ}$.

Answer:
$C=\cos ^{-1}\left(\frac{1}{\sqrt{8}}\right), b=\tan ^{-1} \frac{1}{\sqrt{6}}$.
(iii) The geometry is hyperbolic and $\sinh A B=\frac{1}{\sqrt{2}}$.

Answer:
$C=\cos ^{-1}\left(\frac{\sqrt{3}}{\sqrt{8}}\right), b=\tanh ^{-1} \frac{1}{\sqrt{6}}$.
Problem 5. (10 points) Consider the points $A=(0,2), B=(0,4)$ and $C=(1,3)$ as points in the hyperbolic plane. Let γ be the geodesic from A to B and let δ be the geodesic from A to C.
(i) Calculate the hyperbolic length of γ. (Leave your answer in terms of the function \ln but simplify all other terms.)

Answer:

$\ln 2$
(ii) Calculate the hyperbolic length of δ. (Leave your answer in terms of the function \ln but simplify all other terms.)

Answer:
$\ln \frac{3(\sqrt{13}+3)}{2(\sqrt{13}+2)}$
(iii) Calculate the angle of the hyperbolic triangle ABC at A . This is between δ and γ. (Leave your answer in terms of the function $\cos ^{-1}$ but simplify all other terms.)
Answer:
$\cos ^{-1} \frac{3}{\sqrt{13}}$

