QUEENS COLLEGE
Math 618

Department of Mathematics
Second Midterm Exam Spring 2013

Solutions
$4.30 \mathrm{pm}-5.45 \mathrm{pm}$, Monday, May 13, 2013

Problem 1. CHOOSE ONE OPTION ONLY, there is no extra credit for doing both. Either:

State and prove a theorem giving the area of a triangle in hyperbolic geometry. You should include a careful statement of any results that you assume. A complete proof must include the correct evaluation of at least one integral!
Answer: See Theorem 7.21 and Lemma 7.2 .2 on page 93 of the text.
Or:
A hyperbolic triangle has vertices: $A=(0, \sqrt{34}), B=(0,4)$ and $C=(3,5)$. Find the cotangents of the angles and the lengths of the sides of the triangle. (Write your answers into this grid and give your work below.)

$$
\cot (\mathrm{A})=0 \quad \cot (\mathrm{~B})=\frac{3}{4} \quad \cot (\mathrm{C})=\frac{5}{3}
$$

side $\mathrm{a}=\ln (2) \quad$ side $\mathrm{b}=\ln \left(\frac{5}{\sqrt{34}-3}\right) \quad$ side $\mathrm{c}=\ln \left(\frac{\sqrt{34}}{4}\right)$

Answer:

The angles A, B, C are $90^{\circ}, \beta, \gamma$ in the Figure.
We have $c=\ln \left(\frac{\sqrt{34}}{4}\right)$ (from the formula for the length of a straight geodesic). The formula for the length of a curved geodesic gives $a=\ln \left(\frac{\csc (180-\beta)-\cot (180-\beta)}{\csc 90-\cot 90}\right)=\ln \left(\frac{\csc \beta+\cot \beta}{1-0}\right)=\ln \left(\frac{1+\cos \beta}{\sin \beta}\right)=\ln 2$, and $b=\ln \left(\frac{\csc 90-\cot 90}{\csc (90-\gamma)-\cot (90-\gamma)}\right)=$ $\ln \left(\frac{1}{\sec \gamma-\tan \gamma}\right)=\ln \left(\frac{5}{\sqrt{34}-3}\right)$.

Problem 2. \quad Suppose that A, B, C, and D are the vertices $(0,0),(2,0),(2,2)$, and $(0,2)$ of a square.
(a) The transformation $\tau_{B C} \circ R_{A, 90}$ is a rotation $R_{X, \alpha}$. Find the coordinates of X and the angle α.

Answer:

$X=(-1,1)$ and $\alpha=90^{\circ}$.
(b) The transformation $\gamma_{A D} \circ \gamma_{A B}$ is a rotation. Identify its center and angle of rotation.

Answer:

The center is $(-1,1)$ and the angle is 180°.

Problem 3. A hyperbolic isosceles triangle $A B C$ has sides with lengths a, b, c that satisfy $\cosh (a)=4$, $\cosh (b)=\sqrt{3}, \cosh (c)=\sqrt{3}$.
(a) Find $\sinh (b)$. (You must simplify this answer to get full credit!)

Answer:

$\sinh ^{2} b=\cosh ^{2} b-1=3-2=2$. Thus $\sinh b=\sqrt{2}$.
(b) Find $\cos (\alpha)$, where α is the angle of the triangle opposite the side a.

Answer:

The law of cosines states that:

$$
\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos \alpha
$$

Substituting for the hyperbolic functions we obtain:

$$
4=\sqrt{3} \sqrt{3}-\sqrt{2} \sqrt{2} \cos \alpha
$$

Hence $\cos \alpha=\frac{-1}{2}$. (It follows that $\alpha=120^{\circ}$ and $\sin \alpha=\sqrt{3} / 2$.)
(c) Let $C H$ be the perpendicular geodesic from the vertex C to the opposite side c. Let h be the hyperbolic length of $C H$. Find $\sinh (h)$.
Answer:
From the right triangle $C H A$ we have

$$
\frac{\sqrt{3}}{2}=\sin (180-\alpha)=\frac{\sinh h}{\sinh b}
$$

We deduce that

$$
\sinh h=\frac{\sqrt{3} \sinh b}{2}=\frac{\sqrt{3}}{\sqrt{2}}
$$

Problem 4. Calculate the hyperbolic area of the region bounded by the y -axis, the line $y=x$, the circle centered at the origin with radius 1 , and the circle centered at the origin with radius 2 .
Answer:
If R is the given region and $h(R)$ is its hyperbolic area then:

$$
h(R)=\iint_{R} \frac{d x d y}{y^{2}}=\iint_{R} \frac{r d r d \theta}{r^{2} \sin ^{2} \theta}=\left(\int_{r=1}^{2} \frac{d r}{r}\right)\left(\int_{\theta=\pi / 4}^{\pi / 2} \csc ^{2} \theta d \theta\right)=(\ln 2-\ln 1)(-\cot (\pi / 2)+\cot (\pi / 4))=\ln 2
$$

Problem 5. \quad Suppose that two circles p and q intersect at A and B. Let l and m be the diameter lines of p and q through B. Suppose that l meets q at C and that m meets p at D. Prove that the line $A B$ is a diameter line of the circle $B C D$.
(For partial credit, draw a diagram, choose a center of inversion and draw a careful diagram of the inverted configuration.)

Answer:

Suppose that in inversion centered at B transforms A, C, p, q, l, m to $A^{\prime}, C^{\prime}, p^{\prime}, q^{\prime}, l^{\prime}, m^{\prime}$. Then $p^{\prime}, q^{\prime}, l^{\prime}, m^{\prime}$ are lines and $p^{\prime} \cap q^{\prime}=A^{\prime}, l^{\prime} \cap m^{\prime}=B, l^{\prime} \cap q^{\prime}=C^{\prime}, m^{\prime} \cap p^{\prime}=D^{\prime}$. Moreover, $l^{\prime} \perp p^{\prime}$ and $m^{\prime} \perp q^{\prime}$. It follows that p^{\prime} and q^{\prime} are altitudes of triangle $D^{\prime} C^{\prime} B$. Therefore A^{\prime} is the orthocenter of this triangle. Hence $B A^{\prime}$ is the third altitude of the triangle and is perpendicular to the side $C^{\prime} D^{\prime}$. Inverting back, we deduce that $A B$ is orthogonal to the circle $B C D$. In other words $A B$ is a diameter line of the circle.

