Computer Generation of Incidence Theorems

Alex Ryba,
Queens College, CUNY

SiCGT23
Kranjska Gora, Slovenia, June 23, 2023

The two standard incidence theorems are due to Pappus and Desargues. They exhibit 9_{3} and 10_{3} configurations and apply to certain arrangements of 6 initial points.

Pappus

Theorem (Pappus)

If the vertices of a hexagon lie alternately on 2 lines then the 3 points of intersection of opposite sides of the hexagon are collinear.

Is Pappus a theorem?

Pappus said so 1700 years ago.

We agree. We don't expect X, Y and Z to line up.

We can quantify our belief that Pappus is a theorem

The initial points $1,2,3,4,5,6$ are ingredients.
Other objects have recipes: X is $\left\langle\left[\begin{array}{ll}1 & 2] \\ [45]\rangle\end{array}\right.\right.$
The Pappus line $X Y$ is $\left[\left\langle\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{lll}4 & 5\end{array}\right\rangle\left\langle\left[\begin{array}{ll}3 & 2\end{array}\right][65]\right\rangle\right]\right.$

Ingredient permutations that preserve a recipe

14.25 .36 maps it to $\left[\left\langle\left[\begin{array}{lll}4 & 5\end{array}\right]\left[\begin{array}{ll}1 & 2\end{array}\right]\right\rangle\left\langle\left[\begin{array}{lll}6 & 5\end{array}\right]\left[\begin{array}{ll}3 & 2\end{array}\right\rangle\right]\right.$
13.46 maps it to [$\left\langle\left[\begin{array}{lll}3 & 2\end{array}\right]\left[\begin{array}{lll}6 & 5\end{array}\right\rangle\left\langle\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{ll}5\end{array}\right]\right\rangle\right]$

Combinatorial stabilizer of the recipe S_{C} has size 4 .

Geometric stabilizer also includes 135.246 because $X Y=Y Z=Z X$. Geometric stabilizer S_{G} has size 12 .
Any recipe where $S_{C} \neq S_{G}$ gives an incidence theorem.

Algorithm

Choose a set of input objects. Generate recipes recursively. Compute the stabilizers S_{C} and S_{G} for the recipes. Whenever the stabilizers differ output a theorem.

Are there theorems with 5 input points?

Generation 1 (Point types: 1, Line types: 0)
Generation 2 (Point types: 1, Line types: 1)
Generation 3 (Point types: 2, Line types: 1)
Generation 4 (Point types: 2, Line types: 4)
Generation 5 (Point types: 25, Line types: 4)
20: $\langle[a\langle[b c][d e]\rangle][b\langle[a d][c e]\rangle]\rangle:\left|S_{C}\right|=2,\left|S_{G}\right|=6$, abe
10: $\langle[\langle[b d][e c]\rangle\langle[b e][d c]\rangle][\langle[a d][e c]\rangle\langle[a e][d c]\rangle]\rangle:\left|S_{C}\right|=4 \ldots$

The computer's first theorem.

$\left\langle[a\langle[b c c][d e]\rangle]\left[b\left\langle\left[\begin{array}{lll}a d][c e & e\end{array}\right]\right]\right\rangle=\langle L M\rangle\right.$
Matches its image under (a, b, e):
$\left\langle\left[\begin{array}{lll}b & \langle[& c\end{array}\right]\left[\begin{array}{ll}d & a\end{array}\right\rangle\right]\left[\begin{array}{lll}\left.\left.\left[\begin{array}{ll}b & d\end{array}\right]\left[\begin{array}{ll}c & a\end{array}\right]\right]\right\rangle=\langle M & N\rangle\end{array}\right.$
L, M and N are concurrent.

Five special lines

Generation 6 (Point types: 25, Line types: 792)
5: $[$ a $\langle[b c][\langle[c d][e a]\rangle\langle[b e][d a]\rangle]\rangle]:\left|S_{C}\right|=4,\left|S_{G}\right|=24$, de bcde

Five special lines

Generation 6 (Point types: 25, Line types: 792)
5: $[$ a $\langle[b c][\langle[c d][e a]\rangle\langle[b e][d a]\rangle]\rangle]:\left|S_{C}\right|=4,\left|S_{G}\right|=24$, de bcde

Is it a theorem?

Theorem
The recipe [a $\langle[b c][\langle[c d][e a]\rangle\langle[b e][d a]\rangle]\rangle]$ gives a ruler construction for the tangent at a to the conic abcde.

Proof.

The hexagon aaebcd is inscribed in the conic.
Its Pascal line L is $[\langle[c d][e a]\rangle\langle[b e][d a]\rangle]$.
L also passes through the intersection of $b c$ and the tangent at a. Therefore: $\langle[b c][\langle[c d][e a]\rangle\langle[b e][d a]\rangle]\rangle$ lies on the tangent at a.

A mystery

At generation 7 :
[a $\langle[\langle[b a][c d]\rangle\langle[b c][a d]\rangle] \quad[\langle[b a][c e]\rangle\langle[b c][a e]\rangle]\rangle]$ $[\langle[b c][d e]\rangle\langle[b\langle[c a][d e]\rangle] \quad[c\langle[b a][d e]\rangle]\rangle]$
\rangle
Has combinatorial count 15 and geometric count 5 .

Mystery Picture

