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Pappus and Desargues

The two standard incidence theorems are due to Pappus and Desargues.
They exhibit 93 and 103 configurations and apply to certain arrangements
of 6 initial points.
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Pappus

Theorem (Pappus)
If the vertices of a hexagon lie alternately on 2 lines then the 3 points of
intersection of opposite sides of the hexagon are collinear.
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Is Pappus a theorem?

Pappus said so 1700 years ago.

We agree. We don’t expect X, Y and Z to line up.
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We can quantify our belief that Pappus is a theorem

The initial points 1, 2, 3, 4, 5, 6 are ingredients.
Other objects have recipes: X is ⟨[1 2] [4 5]⟩
The Pappus line XY is [⟨[1 2] [4 5]⟩ ⟨[3 2] [6 5]⟩]
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Ingredient permutations that preserve a recipe

Pappus line XY is [⟨[1 2] [4 5]⟩ ⟨[3 2] [6 5]⟩]
14.25.36 maps it to [⟨[4 5] [1 2]⟩ ⟨[6 5] [3 2]⟩]
13.46 maps it to [⟨[3 2] [6 5]⟩ ⟨[1 2] [4 5]⟩]
Combinatorial stabilizer of the recipe SC has size 4.

Geometric stabilizer also includes 135.246 because XY = YZ = ZX .
Geometric stabilizer SG has size 12.
Any recipe where SC ̸= SG gives an incidence theorem.
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Algorithm

Choose a set of input objects.
Generate recipes recursively.
Compute the stabilizers SC and SG for the recipes.
Whenever the stabilizers differ output a theorem.
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Are there theorems with 5 input points?

Generation 1 (Point types: 1, Line types: 0)

Generation 2 (Point types: 1, Line types: 1)

Generation 3 (Point types: 2, Line types: 1)

Generation 4 (Point types: 2, Line types: 4)

Generation 5 (Point types: 25, Line types: 4)

20: ⟨ [a ⟨[bc][de]⟩] [b ⟨[ad ][ce]⟩] ⟩ : |SC | = 2, |SG | = 6, abe

10: ⟨ [⟨[bd ][ec]⟩ ⟨[be][dc]⟩] [⟨[ad ][ec]⟩ ⟨[ae][dc]⟩] ⟩ : |SC | = 4 . . .
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The computer’s first theorem.

⟨ [a ⟨[b c] [d e]⟩] [b ⟨[a d ] [c e]⟩] ⟩ = ⟨L M⟩
Matches its image under (a, b, e):
⟨ [b ⟨[e c] [d a]⟩] [e ⟨[b d ] [c a]⟩] ⟩ = ⟨M N⟩
L, M and N are concurrent.
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Five special lines

Generation 6 (Point types: 25, Line types: 792)
5: [ a ⟨[bc] [⟨[cd ][ea]⟩⟨[be][da]⟩]⟩] : |SC | = 4, |SG | = 24, de bcde
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Is it a theorem?

Theorem
The recipe [ a ⟨[bc] [⟨[cd ][ea]⟩⟨[be][da]⟩]⟩] gives a ruler construction for
the tangent at a to the conic abcde.

Proof.
The hexagon aaebcd is inscribed in the conic.
Its Pascal line L is [⟨[cd ][ea]⟩⟨[be][da]⟩].
L also passes through the intersection of bc and the tangent at a.
Therefore: ⟨[bc] [⟨[cd ][ea]⟩⟨[be][da]⟩]⟩ lies on the tangent at a.
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A mystery

At generation 7:

⟨
[a ⟨[⟨[ba][cd ]⟩⟨[bc][ad ]⟩] [⟨[ba][ce]⟩⟨[bc][ae]⟩]⟩]
[⟨[bc][de]⟩ ⟨[b⟨[ca][de]⟩] [c⟨[ba][de]⟩]⟩]

⟩

Has combinatorial count 15 and geometric count 5.
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Mystery Picture
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