
QUEENS COLLEGE Department of Computer Science
CSCI 313 Practice problems on LinkedLists

Instructor: Alex Ryba

These problems were given on exams for this course. Some older problems did not make use of generics in Java, but
generic implementations are now required in this course.

Problem 1 A generic class List is to be programmed as a doubly linked list that begins and ends with a sentinel
node. The sentinel is created in the constructor and can never be removed. Assume a standard implementation of
a class DNode with private instance variables called data, next, prev that are accessed by getter and setter methods
only.

The skeleton of code for the class List follows:

public class List<T> {

private DNode<T> sentinel;

private int size;

public List()

// initializes the list: to be coded as (a)

public void insertFirst(T x)

// adds x at the front of the list, leaving other elements in place: coded as (b)

public T removeLast() throws Exception

// removes the last element from the list, returning its data: to be coded as (c)

}

(a) Implement the constructor.

(b) Implement insertFirst.

(c) Implement removeLast.

Problem 2 Suppose that a doubly linked list is implemented as a generic class DoublyLinkedList<T> that uses
an instance variable size and sentinel doubly linked nodes header and trailer and no other instance variables. Write
a method of the class called removeMiddle that removes either the middle node from a list of odd length, or the
middle two nodes from a list of even length. The method should throw an exception if the required node(s) do not
exist. Give a O-estimate for the run time of your method in terms of the number n of elements in the list.

Problem 3 Consider the following partial implementation of a circular list of singly linked nodes. The nodes of
the list are arranged into a big circle. One special node is marked as the cursor. All changes to the list are made at
the cursor node. This cursor node can be moved forward through the list with the advance method to allow for all
data to be accessed.

public class CircularList<T> {

private Node<T> cursor;

public CircularList() { cursor = null; }

public boolean isEmpty() {return cursor == null;}

public void advance() { cursor = cursor.getNext(); }

public void addAfter(T d) { CODE OMITTED TO SAVE SPACE }

public void addBefore(T d) {

addAfter(d);

swapData(cursor, cursor.getNext());

cursor = cursor.getNext();

}

private void swapData(Node<T> n, Node<T> m) { // helper method for addBefore and remove

T temp = n.getData();

n.setData(m.getData()); m.setData(temp); }

public T remove() { CODE OMITTED HERE }

public String toString() { CODE OMITTED HERE }

}



Supply an implementation for the missing method toString. The output from your method should match the
following format (which indicates a circular list with size 3, storing data A, B, C and with the cursor positioned at
item A):

A -> B -> C ->

(Extra credit) Write an implementation of the method remove. (Hint: Use the the trick applied in the addBefore
method. First apply the swapData() method to switch the data at the cursor and its follower node. Then remove
the follower node.)

Problem 4 Suppose that a doubly linked list is made of DNodes implemented with the following instance
variables and constructor:

public class DNode<T> {

private T data;

private DNode<T> prev, next;

public DNode(T d, DNode<T> p, DNode<T> n) { data = d; next = n; prev = p; }

// standard getter and setter methods for all instance variables omitted

}

A doubly linked list class is implemented to use sentinels called header and trailer using the following instance
variables and constructor:

public class DList<T> {

private DNode<T> header, trailer;

private int size;

public DList() {

size = 0;

header = new DNode<T>(null, null, null);

trailer = new DNode<T>(null, header, null);

header.setNext(trailer);

}

}

Write a method with the following title line

public T removeBefore(DNode<T> n) throws Exception

It should modify the list by removing the node immediately before the DNode n. It should return the data that was
contained in the removed node. The method should not make any loop through the nodes of the list. You should
throw an appropriate exception in case the removal is not allowed or is impossible.


