Problem 1 Give useful Θ estimates for the following functions $t(n)$.

(a) $t(n) = 5\log_2(n^2) + (\log_2(n))^2 + \log_4(n) + (\log_2(100))^3$.

Answer:
Simple Θ estimates for the terms are $\log(n)$, $(\log(n))^2$, $\log(n)$ and 1. The second of these grows fastest so our estimate is $t(n) = \Theta((\log(n))^2)$.

(b) $t(n)$ satisfies $t(n) = 2t(n/2) + n$.

Answer: The recursive and nonrecursive costs are both $\Theta(n)$ so the Master Theorem gives $t(n) = \Theta(n \log(n))$.

(c) $t(n)$ satisfies $t(n) = 4t(n/3) + n$.

Answer: The recursive cost is $\Theta(n^{\log_3(4)})$ which grows faster than the nonrecursive cost of $\Theta(n)$. Hence the Master Theorem gives $t(n) = \Theta(n^{\log_3(4)})$.

(d) $t(n)$ is the running time of the following function:

```java
public static void shuffle(int []x, int a, int b, int n) {
    for (int i = 0; i < n; i+=2) {
        int temp = x[a + i];
        x[a + i] = x[b + i];
        x[b + i] = temp;
    }
}
```

Answer: The function performs $n/2$ iterations of a loop and each iteration has constant running time. Hence $t(n) = \Theta(n)$.

(e) $t(n)$ is the running time of the following function that calls shuffle from (d):

```java
public static void multiShuffle(int []x, int a, int n) {
    if (n == 0) return;
    multiShuffle(x, a, n/2);
    multiShuffle(x, a + n/4, n/2);
    multiShuffle(x, a + n/2, n/2);
    shuffle(x, a, a + n/2, n/2);
}
```

Answer: Here, the recursive cost is $\Theta(n^{\log_2(3)})$ which grows faster than the nonrecursive cost of $\Theta(n)$ (given by (d)). Hence the Master Theorem gives $t(n) = \Theta(n^{\log_2(3)})$.

Problem 2 Give useful O-estimates of the run times of the following methods:

(a) The method `addHead` for a singly linked list that has size n.

Answer: $O(1)$

(b) An efficient method to calculate the power x^n (consider the run time as a function of n, the time should be considered as being proportional to the total number of additions, subtractions, multiplications, and divisions performed).

Answer: $O(\log(n))$

(c) An efficient method to sort an array of n numbers into order.

Answer: $O(n \log(n))$

For (d) and (e), consider the following recursive function, in which A represents an integer constant:
int f(int n) {
 if (n <= 0) return 1;
 int ans = f(n/2) * 2;
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 ans += i / j;
 for (int k = 1; k < A; k++)
 ans -= f(n/2 - k);
 return ans;
}

(d) In the case where $A = 3$ estimate the run time of $f(n)$.
Answer: $O(n^2)$

(e) In the case where $A = 4$ estimate the run time of $f(n)$.
Answer: $O(n^2 \log(n))$